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Groups of humans routinely misassign value to complex future
events, especially in settings involving the exchange of resources.
If properly structured, experimental markets can act as excellent
probes of human group-level valuation mechanisms during path-
ological overvaluations—price bubbles. The connection between
the behavioral and neural underpinnings of such phenomena has
been absent, in part due to a lack of enabling technology. We used
a multisubject functional MRI paradigm to measure neural activity
in human subjects participating in experimental asset markets in
which endogenous price bubbles formed and crashed. Although
many ideas exist about how and why such bubbles may form and
how to identify them, our experiment provided a window on the
connection between neural responses and behavioral acts (buying
and selling) that created the bubbles. We show that aggregate
neural activity in the nucleus accumbens (NAcc) tracks the price
bubble and that NAcc activity aggregated within a market predicts
future price changes and crashes. Furthermore, the lowest-earning
subjects express a stronger tendency to buy as a function of mea-
sured NAcc activity. Conversely, we report a signal in the ante-
rior insular cortex in the highest earners that precedes the
impending price peak, is associated with a higher propensity
to sell in high earners, and that may represent a neural early
warning signal in these subjects. Such markets could be a model
system to understand neural and behavior mechanisms in other
settings where emergent group-level activity exhibits mistaken
belief or valuation.
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Asset price bubbles are extended periods in which prices rise
well above fundamental values. Identifying bubbles and

predicting crashes from price data alone is a notoriously difficult
problem (1). However, prices are created by the collective be-
havior of the market participants, so neural activity could offer
biomarkers for the evolution of price bubbles. Studies of asset
price bubbles indicate a role for psychological factors such as
“euphoria” (2), “irrational exuberance” (3), “mania” (4), “animal
spirits” (5), and “sentiment” (6). We sought neural data sup-
porting such psychological constructs that might help to identify
price bubbles.
We observed the formation and crash of endogenous bubbles

in experimental asset markets (7, 8) using multisubject neuro-
imaging. In each of 16 market sessions, consisting of an average
of 20 traders (range, 11–23), we measured the neural activity of
2–3 participants (n = 44 total) using functional magnetic reso-
nance imaging (fMRI). Our market design is based upon ref. 9.
Traders could buy or sell one risky asset unit in each period. Fig.
1A illustrates the sequence of experimental events. Each market
had 50 trading periods. All subjects began with 100 units of ex-
perimental currency (a risk-free asset) and 6 units of a risky as-
set. Each period, the risky asset paid a currency dividend d of
either 0.40 or 1.00 per unit (with equal probability), creating an
expected dividend E[d] = 0.70. Currency earned a fixed interest
rate r of 5% each period. After all 50 rounds of trading were

completed, the risky asset was redeemed for 14 units of the risk-
free currency.
These parameters defined an unambiguous fundamental value

for the risky asset. Buying the risky asset in period t at price Pt
and selling it one period later leads to the expected net gain
Et½Pt+1�−Pt   +   E½d�. The same investment of Pt in the risk-free as-
set yields a sure net gain of rPt. If these two amounts are equal—in
economic terms, if asset prices are “in equilibrium”—then there is
a stationary price equal to a constant fundamental value F defined
by F =E½d�=r= 0:70=0:05= 14. Prices persistently above F = 14
indicate a bubble; such a clear bubble measure is rarely available
in field data. Fig. 2A illustrates the price paths for all 16 markets in
this experiment. Bubbles are typical and large: the median price
peak was 64.30 (range, 19.68–156.01). The bubble paths always
result in a crash, and prices in the final period are near the fun-
damental F = 14 (median, 14.13). Fig. 2B illustrates a typical ex-
perimental session. This market bubble crashed after period 30.
Trading volume is substantial, which means that prices do not
result from a few extreme traders.

Results
A key computation during the asset market experiment involves
the monitoring of round-to-round trading activity. Using a gen-
eral linear model (GLM) of the blood oxygenation level-
dependent (BOLD) signal of neural activity, we first established
that the ventral striatum, including the nucleus accumbens
(NAcc), responds strongly to both buying and selling outcomes
revealed at the “Trading Results” screen (Fig. 3A and SI Appendix,
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Table S4). In the call market mechanism that we use, subjects
trade only when the market clearing price is below their expressed
maximum willingness to buy (best bid), or is above their expressed
minimum willingness to sell (best offer). Because the market price
is unknown when the orders are placed, any trade therefore results
in a positive reward prediction error. The NAcc receives a high
density of projections from midbrain dopamine neurons, which
are known to encode reward prediction error signals (10).
Therefore, these GLM results are consistent with hundreds of
studies that indicate that the NAcc plays a central role in the
encoding of reinforcement, subjective value, and reward (11–13)
(SI Appendix, Fig. S2B).
To connect the temporal dynamics of neural activity to the

valuation dynamics reflected in the market price, we extracted
trial-to-trial BOLD signal responses to the “Trading Results”
screen (which shows both prices and bought-or-sold information)
in a region of interest (ROI) centered on the bilateral NAcc
[Montreal Neurological Institute (MNI) [±12, 8, −8]; see
SI Appendix, Fig. S2A]. Recent studies have suggested a role for
the NAcc in the evaluation of both states and policies (14), and
we hypothesized that the time series of neural activity in the
NAcc would contain information about the current state of the
market (15). To test this hypothesis, we realigned neural and
behavioral data from all of the sessions on a common timescale
with 0 marking the peak price in each session. We then averaged
the BOLD signal in our NAcc ROI across all subjects and then
computed the moving average of the previous five periods of
aggregate NAcc activity. The resulting moving-average NAcc
time series is associated with the current level of the endogenous
price bubble (Fig. 3B).
We next investigated whether neural activity in the NAcc

could signal future price changes within a given market session.
To do so, we calculated the five-period moving-average NAcc
signal (as described above) within each session, and sorted this
measure into three terciles. For each tercile of our market-level
measure of NAcc activity, we computed the mean of the five-

period forward return, ðpt+5 − ptÞ=pt. Fig. 3C shows a clear and
statistically significant difference between forward returns in the
lowest tercile and forward returns in the highest tercile, with high
values of NAcc activity associated with the lowest returns (P <
0.001, Mann–Whitney/Wilcoxon rank sum test for equality of
distributions). Furthermore, Fig. 3D shows that when the within-
session NAcc moving average is high, the empirical probability of
a crash (defined as a drop of more than 50% in price over the
next five trading rounds) is more than four times greater than
when it is low (0.117 vs. 0.026; baseline, 0.075; P < 0.001, Fisher’s
exact test). Within the context of these experiments, neural ac-
tivity in the NAcc appears to predict future changes in the price
of the risky asset. Lower levels of NAcc activity are associated
with higher future returns and low likelihood of a crash, whereas
higher levels of NAcc activity are associated with low future
returns and increased likelihood of a crash.
Many finance theories of bubbles describe mixtures of naïve

backward-looking “momentum” investors, fundamental traders,
and sophisticated investors who plan ahead (16–18). When
bubbles form and crash, these three types will have low, medium,
and high earnings, respectively. To investigate the relationship
between individual task performance and neural activity, we
sorted all subjects into three terciles of experimental earnings.
These groups clearly have different patterns of dynamic share
trading (Fig. 4A). However, Fig. 4B shows that the moving-
average NAcc time series in the highest and lowest-earning groups
are similar across trading periods.
Because average NAcc signal dynamics are similar in these

two groups, but earnings performances are so different, we
looked for an association across individuals between their NAcc-
buying sensitivity and performance. For each trader, we computed
ð∂=∂NtÞpðBt+1Þ via logistic regression, where pðBt+1Þ is the prob-
ability of buying at time t + 1 and Nt is the average NAcc activity
at time t over the five periods from t − 4 to t. The partial derivative
ð∂pðBt+1ÞÞ=∂Nt is a brain-buying signal: it measures the change
in propensity to buy as a function of recent NAcc activity.
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Fig. 1. Asset market experiment. (A) Each period subjects viewed the following screens, in order: Positions, Order Entry (×5), Trading Results, and Dividends
and Interest. (B) Order elicitation procedure. Subjects responded Buy, Sell, or Hold to a random (uniform) price draw from each of five bins, each of width
equal to 10% of the last period’s price. The middle bin was centered on the last period’s price. (C) How the price is chosen (=market clearing). The highest
price at which subjects responded Buy, and the lowest price at which subjects responded Sell, were entered into a closed book call market. Prices and trading
outcomes were reported on the Trading Results screen.
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Fig. 4C plots individual trader profits against ð∂pðBt+1ÞÞ=∂Nt. The
relation is significantly negative (ρ = −0.52, P < 0.001). The
negative slope measures the economic cost of “following one’s
nucleus accumbens.”
We also used interval regression analysis to estimate the in-

dependent contribution of neural activity in several ROIs to
future valuation (SI Appendix). We find that the NAcc response

is positively associated with demand for the risky asset in sub-
sequent trading periods, after controlling for observable varia-
bles such as returns, dividend yield, and the individual’s current
policy (SI Appendix, Table S7). This pattern appears to be driven
by a stronger brain–behavior link in low-earning subjects.
Although low earners are net buyers around the price peak,

high earners begin to sell their shares a few periods before the
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Fig. 2. Endogenous market bubbles. (A) Price paths in16 different experimental market sessions. The dark line shows the average price in each period over
the 16 sessions. Plotted below the prices is the normalized per-subject volume for each period; error bars are SEs. (B) Single-session prices (Top) and trading
volume (Middle) from one statistically typical experimental session. At Bottom is shown the risky asset holdings; each subject is indicated by a different color.
MRI subjects are shown with thicker lines. The dashed line is the “clairvoyant” profit-maximizing share path (assuming subjects could somehow correctly
anticipate all future prices).

y=8

p<0.05 p<5e-6

BA

C D
*** ***

Fig. 3. Irrational exuberance. (A) GLM results showing the conjunction of neural responses to “You Bought” and “You Sold” messages; P < 0.05 (familywise
error corrected). Peak T = 7.69, MNI = [−10, 8, −14]. (B) Average NAcc activity tracks the endogenous market bubble. MA5Nacc (blue) is the average of the five
previous periods’ NAcc activity, recentered around the maximal (peak) price in each session. (C) NAcc activity predicts future returns of the risky asset. Earners
were divided into three groups, by terciles of earnings. Each bar shows the mean five-period forward return, for each tercile of the five-period moving
average of NAcc activity, calculated within session. The mean return in the highest tercile of NAcc activity is significantly less than the mean return in the
lowest tercile. (D) NAcc activity within session predicts crashes. Each bar shows the relative frequency of a crash (defined as a price drop of greater than 50%)
occurring in the next five periods. The observed incidence of crashes is much greater in the highest tercile of our moving-average NAcc activity signal.
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bubble peak (Fig. 4A). To investigate the neural activity associ-
ated with the switch to selling before the peak, we focused
a priori on the anterior insular cortex. The insula is an “in-
teroceptive” area that is active during bodily discomfort and
unpleasant emotional states, such as pain, anxiety, and disgust.
Its anterior region is thought to be associated with the awareness
of bodily states (19, 20). Anterior insula is also activated by fi-
nancial risk (21, 22) and by variance in prediction errors,
a measure of uncertainty in temporal-difference learning models
(23). We hypothesized that neural activity in the anterior insula
might motivate sophisticated participants to begin selling the
risky asset. Fig. 4D shows the average BOLD activity paths from
the anterior insular cortices of the high- and low-earnings groups
(using an ROI centered at MNI [36, 24, 2], radius of 6 mm, based
on ref. 21; SI Appendix, Fig. S3). Near the time that the two
groups begin their respective shifts to selling and buying, insula
activity increases in the high earners but there is no similar re-
sponse in the low earners.
Analogously to the previous NAcc-buying sensitivity analysis,

we measured the association between the insula-selling re-
lationship and performance. Fig. 4E plots total earnings against
ð∂pðSt+1ÞÞ=∂It , where pðSt+1Þ is the probability of selling at time
t + 1, and It is the average neural activity in the right anterior
insula at time t over the previous five periods (including time t).

This measure of the neural brain-selling link is positively corre-
lated with performance (ρ = 0.46, P < 0.003). In the high earners,
the right anterior insula signal seems to encode a risk detection
or warning signal that is associated with selling profitably.

Discussion
The experimental method is ideal for understanding the neuro-
psychology of asset bubbles, because the experimenter can con-
trol the fundamental asset value, and hence clearly identify when
prices are too high (1–3, 18, 24, 25). Our experimental design used
live trading to show that asset price bubbles result endogenously
from interactions between different types of traders. Traders react
to buy or sell events and represent bubble magnitude commonly in
the NAcc [also observed in other investment decision tasks (26–
28)]. Elevated NAcc activity is associated with low future returns
and higher likelihood of a crash. Therefore, NAcc activity in our
experiments appears to provide an indicator for price bubbles that
is consistent with historical accounts of euphoria and irrational
exuberance near the peak in prices.
Traders who buy more aggressively given NAcc signals per-

form worse in the task. The slope of this buy/NAcc relation
represents a new “neurobehavioral metric” for the financial cost
of “irrational exuberance” and could be used as quantitative and
parametric biomarker in other contexts where humans overvalue

CBA

D E

Fig. 4. Individual differences: high and low earners and neurobehavioral metrics. (A) Trading behavior of the highest and lowest earnings terciles, aligned
around the market peaks. The y axis plots the mean change in units of the risky asset in each period. These trading curves cross about 10 periods before the
peak of the market. The high earners’ sell-off continues unabated until about 10 periods after the peak. (B) The NAcc activity association of prices appears to
be consistent across subject groups. The colored lines plot the mean NAcc activity in the highest and lowest terciles of the payout distribution. (C) Average
right anterior insula activity in high earners and low earners shows that low earner activity fluctuates around 0, whereas high earner activity shows a peak
that coincides with the beginning of the sell-off of units shown in A (5–10 periods before the price peak). We used an ROI centered on MNI [36, 24, 2],
corresponding to the peak “risk prediction” signal from ref. 23. (D) The cost of changing one’s buying probability as a function of the change in activity in the
NAcc as read out by earnings. Forty-one scanned subjects are included in this plot. The negative slope shows that tracking the group-defined bubble and
committing to it in the form of increased brain-to-buying probability costs money. This defines a neural metric for irrational exuberance and measures it in
terms of earnings. (E) Increased propensity to sell based on right anterior insula activity (a neurobehavioral brain-selling relation) is associated with higher
earnings. The positive slope shows that subjects whose insula activity is predictive of future selling earn more.
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bad acts or outcomes like compulsive gambling, overeating, or
drug addiction (29).
Another neurobehavioral finding is a positive association be-

tween trading performance and selling when neural activity in
the anterior insula is elevated. The insula signal may reflect in-
creased perception of risk (21–23) or of uncomfortable bodily
states (19, 20). The presence of an elevated insula signal in the
high earners before the price peak, its concurrent absence in the
low earners, its association with trading pattern changes, and
the stronger neurobehavioral insula-selling link among high
earners suggest that increased neural activity in the right anterior
insula may constitute an early warning signal for these individuals
to begin switching from the risky to the risk-free asset. The evi-
dence from both of our neurobehavioral metrics is consistent with
the study by Kuhnen and Knutson (26), who show that activations
in both of these regions can lead to shifts in risk preferences.
Many theories of bubbles in large natural markets depend on

economic agents’ incentives (30) or on market structure (31). A
recent literature examines the interaction between valuation and
media coverage (32–34). Another explanation involves traders
who get internal signals (or “hunches”) that a bubble exists;
bubbles then persist because traders who get early signals keep
buying, expecting that the other traders’ signals will not arrive until
later (35). However, these theories do not specify neural mech-
anisms (36). Our evidence is consistent with bubble accounts
based on bounded rationality, emotion, and neural activity (2–9,
16–18, 36, 37). Warren Buffet famously said, “Be fearful when
others are greedy, and greedy when others are fearful.” Our ex-
perimental results support the first part of his advice to a surpris-
ing degree: Wiser traders who begin selling when their insula is
active (indicating discomfort) sell a few periods before the peak to
traders with the highest “greed,” measured by increased NAcc-
buying sensitivity.
Our results contribute to understanding the biological basis of

group valuation in natural asset markets. Modern examples of
bubbles in the last three decades include stocks in Japan, in
China, and in the US high-tech sector, and housing in many
countries. Bubbles redistribute enormous wealth and can leave
long-lasting macroeconomic scars, and are therefore important
to both investors and policymakers. In 1996, Federal Reserve
Chair Alan Greenspan asked: “But how do we know when ir-
rational exuberance has unduly escalated asset values?” (38). His

successor, Ben Bernanke, suggested “progress will require care-
ful empirical research with attention to psychological as well as
economic factors” (39). Our results point in the direction of
theories based on an interaction between traders with exuberant
valuation and forward-looking traders who ride bubbles, and
then sell when they feel uncertain.

Materials and Methods
Weconducted16experiment sessions (2 inOctober 2011, 8 in January 2012, and
6 inApril 2012)with 320 total subjects. Each session includedbetween 11and 23
subjects (mean, 20; min, 11; max, 23). The majority of our subjects (276 total)
were University of California, Los Angeles, students participating in the ex-
periment at the California Social Science Experimental Laboratory (CASSEL). In
addition, 2–3 individuals per session (44 total) took part in the experiment
from two locations at the Virginia Tech Carilion Research Institute (Blacksburg
and Roanoke, VA). These subjects underwent fMRI of their neural activity
during the experiment. All participants were networked together via a special
experiment software package, NEMO, to conduct the experiment. NEMO was
designed for use with multiple subjects in the scanner.

Of the 44 total subjects we scanned, 2 subjects were dropped because of
technical issues with syncing behavioral and functional imaging data. One
additional subject was dropped because the subject had no “Sell” trans-
actions, leaving 41 fMRI subjects.

Behavior-only participants received a $5 show-up payment, whereas
subjects who underwent fMRI scanning received an additional payment of
$50. Before trading began, the experimenters read the instructions aloud.
Subjects then took a five-question quiz (reproduced below), after which the
experimenters reviewed the quiz answers. In addition, subjects participated
in three practice trading rounds before live trading began.

SI Appendix, Table S1, provides summary statistics separately for subjects
who did and did not undergo imaging. We also conducted one pilot session
where all subjects (behavior-only and fMRI) were located in Virginia; this
session is included in the data. Our scanned subjects are in general older
(mean age, 28.43 vs. 23.15). In addition, 85% of our scanned population
indicated their race as White or Hispanic, whereas 70% of our behavior-only
subjects indicated that their race was Asian. The sex balance for both groups
is close to 50%.

ACKNOWLEDGMENTS. We thank Nathan Apple for help implementing the
large group experiment across three cities and four sites simultaneously. We
also thank Antonio Rangel for contributions to the early stages of this project.
This research was supported by National Science Foundation Grant SES-00-
99209, the Gordon and Betty Moore Foundation, the Lipper Family Foundation
(C.F.C.), National Institutes of Health Grants DA11723 and MH085496 (to P.R.M.),
The Kane Family Foundation (P.R.M.), Defense Advanced Research Projects
Agency (P.R.M.), and a Wellcome Trust Principal Research Fellowship (to P.R.M.).

1. Flood RP, Garber PM (1980) Market fundamentals versus price-level bubbles: The first
tests. J Polit Econ 88(4):745–770.

2. Kindleberger CP, Aliber RZ (2005) Manias, Panics, and Crashes: A History of Financial
Crises (Wiley, Hoboken, NJ).

3. Shiller R (2005) Irrational Exuberance (Broadway Books, New York), 2nd Ed.
4. Ofek E, Richardson M (2003) Dotcom mania: The rise and fall of internet stock prices.

J Finance 58(3):1113–1138.
5. Akerlof G, Shiller R (2009) Animal Spirits: How Human Psychology Drives the Econ-

omy, and Why It Matters for Global Capitalism (Princeton Univ Press, Princeton).
6. Baker M, Wurgler J (2006) Investor sentiment and the cross-section of stock returns.

J Finance 61(4):1645–1680.
7. Plott CR, Sunder S (1988) Rational expectations and the aggregation of diverse in-

formation in laboratory security markets. Econometrica 56(5):1085–1118.
8. Smith VL, Suchanek GL, Williams AW (1988) Bubbles, crashes, and endogenous ex-

pectations in experimental spot asset markets. Econometrica 56(5):1119–1151.
9. Bostian AJ, Holt CA (2009) Price bubbles with discounting: A Web-based classroom

experiment. J Econ Educ 40(1):27–37.
10. Montague PR, Dayan P, Sejnowski TJ (1996) A framework for mesencephalic dopa-

mine systems based on predictive Hebbian learning. J Neurosci 16(5):1936–1947.
11. Montague PR, Hyman SE, Cohen JD (2004) Computational roles for dopamine in

behavioural control. Nature 431(7010):760–767.
12. Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD (2011) Large-scale auto-

mated synthesis of human functional neuroimaging data. Nat Methods 8(8):665–670.
13. Bartra O, McGuire JT, Kable JW (2013) The valuation system: A coordinate-based

meta-analysis of BOLD fMRI experiments examining neural correlates of subjective
value. Neuroimage 76:412–427.

14. Li J, Daw ND (2011) Signals in human striatum are appropriate for policy update
rather than value prediction. J Neurosci 31(14):5504–5511.

15. Kishida KT, et al. (2011) Sub-second dopamine detection in human striatum. PLoS One
6(8):e23291.

16. Shleifer A (2000) Inefficient Markets (Oxford Univ Press, Oxford).
17. Barberis N, Greenwood R, Jin L, Shleifer A (2013) X-CAPM: An extrapolative capital

asset pricing model. NBER Working Paper (National Bureau of Economic Research,
Cambridge, MA), No. 19189.

18. Haruvy E, Noussair CN (2006) The effect of short selling on bubbles and crashes in
experimental spot asset markets. J Finance 61(3):1119–1157.

19. Critchley HD, Wiens S, Rotshtein P, Öhman A, Dolan RJ (2004) Neural systems sup-
porting interoceptive awareness. Nat Neurosci 7(2):189–195.

20. Craig AD (2009) How do you feel—now? The anterior insula and human awareness.
Nat Rev Neurosci 10(1):59–70.

21. Preuschoff K, Bossaerts P, Quartz SR (2006) Neural differentiation of expected reward
and risk in human subcortical structures. Neuron 51(3):381–390.

22. Mohr PN, Biele G, Heekeren HR (2010) Neural processing of risk. J Neurosci 30(19):
6613–6619.

23. Preuschoff K, Quartz SR, Bossaerts P (2008) Human insula activation reflects risk
prediction errors as well as risk. J Neurosci 28(11):2745–2752.

24. Camerer C, Weigelt K (1993) Double Auction Markets, eds Friedman D, Rust J
(Addison-Wesley, Redwood City, CA).

25. Dufwenberg M, Lindqvist T, Moore E (2005) Bubbles and experience: An experiment.
Am Econ Rev 95(5):1731–1737.

26. Kuhnen CM, Knutson B (2005) The neural basis of financial risk taking. Neuron 47(5):
763–770.

27. Lohrenz T, McCabe K, Camerer CF, Montague PR (2007) Neural signature of fictive
learning signals in a sequential investment task. Proc Natl Acad Sci USA 104(22):
9493–9498.

28. De Martino B, O’Doherty JP, Ray D, Bossaerts P, Camerer C (2013) In the mind of the
market: Theory of mind biases value computation during financial bubbles. Neuron
79(6):1222–1231.

29. Brewer JA, Potenza MN (2008) The neurobiology and genetics of impulse control
disorders: Relationships to drug addictions. Biochem Pharmacol 75(1):63–75.

Smith et al. PNAS Early Edition | 5 of 6

EC
O
N
O
M
IC

SC
IE
N
CE

S
N
EU

RO
SC

IE
N
CE

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1318416111/-/DCSupplemental/pnas.1318416111.sapp.pdf


30. Allen F, Gorton G (1993) Churning bubbles. Rev Econ Stud 60(4):813–836.
31. Hong H, Scheinkman J, Xiong W (2006) Asset float and speculative bubbles. J Finance

61:1073–1117.
32. Dyck A, Zingales L (2003) The bubble and the media. Corporate Governance and Capital

Flows in a Global Economy, eds Cornelius P, Kogut B (Oxford Univ Press, Oxford, UK).
33. Veldkamp L (2006) Media frenzies in markets for financial information. Am Econ Rev

96(3):577–601.
34. Bhattacharya U, Galpin N, Ray R, Yu X (2009) The role of the media in the Internet IPO

bubble. J Financ Quant Anal 44(3):657–682.
35. Abreu D, Brunnermeier M (2003) Bubbles and crashes. Econometrica 71(1):173–204.

36. Lo A (2013) Fear, greed, and financial crises: A cognitive neurosciences perspective.
Handbook on Systemic Risk, eds Fouque JP, Langsam J (Cambridge Univ Press,
Cambridge, UK).

37. Shefrin H (1999) Beyond Greed and Fear (Oxford Univ Press, Oxford, UK).
38. Greenspan A (1996) The Challenge of Central Banking in a Democratic Society. Available

at www.federalreserve.gov/boarddocs/speeches/1996/19961205.htm. Accessed June 12,
2014.

39. Bernanke B (2010) Implications of the Financial Crisis for Economics. Available
at www.federalreserve.gov/newsevents/speech/bernanke20100924a.htm. Accessed
June 12, 2014.

6 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1318416111 Smith et al.

http://www.federalreserve.gov/boarddocs/speeches/1996/19961205.htm
http://www.federalreserve.gov/newsevents/speech/bernanke20100924a.htm
www.pnas.org/cgi/doi/10.1073/pnas.1318416111


 
 

Supporting Information 

 

Irrational exuberance and neural crash warning signals during endogenous 

experimental price bubbles 

 

Alec Smith1, Terry Lohrenz2, Justin King2, P. Read Montague2,3, Colin F. Camerer1 

 

1. California Institute of Technology, Pasadena, CA 

2. Virginia Tech Carilion Research Institute, Roanoke, VA 

3. The Wellcome Trust Centre for Neuroimaging, University College London, UK 

 

Behavioral Results 

 

Market statistics. Table S1 reports summary price and volume statistics at the 

aggregate and session levels.  To enable comparisons with other studies of 

laboratory asset bubbles we also report summary statistics that measure the extent 

of deviations from fundamental value: the Relative Absolute Deviation and Relative 

Deviation for each session.(1) Both measures are volume weighted, so that they take 

into account the number of trades at a given price.  Relative Absolute Deviation 

(RAD) is computed as 

𝑅𝐴𝐷 =  
∑ 𝑣𝑡 �

|𝑝𝑡 − 14|
14 �50

𝑡=1

∑ 𝑣𝑡50
𝑡=1

 

and Relative Deviation (RD) is computed as 

𝑅𝐷 =  
∑ 𝑣𝑡 �

𝑝𝑡 − 14
14 �50

𝑡=1

∑ 𝑣𝑡50
𝑡=1

 

where pt is the price in each round t and vt is the number of units traded in each 

round. RAD is a measure of “mispricing”: an RAD of 0.1 means that the average trade 

takes place at a price that is 10% different from than fundamental value.  RD adds 

directional measures: an RD of 0.1 means that the average trade takes place at a 



price that is 10% greater than fundamental value. In our experiments, the mean 

RAD is 1.050 and the mean RD is 1.047, indicating that the average trade takes place 

at 104.7% of fundamental value.  The mean RAD and mean RD are very close in 

magnitude because in almost all rounds, the price is greater than fundamental value.  

For comparison, in the experiments reported by (2), the largest reported RAD is 

0.414 and the largest observed RD is 0.297, so our experiments produce bubbles of 

magnitude roughly three times as large. 

 

Scanned vs. behavioral participants. Behavioral participants scored slightly higher on 

the pre-experiment quiz (Table S1: mean score 3.87 vs. 3.43 for the scanned 

participants), and this difference is significantly different from 0 at the 5% level 

using a two-sided t-test for difference in means (n =317, p-value 0.04).   However, 

this difference in quiz performance did not appear to result in a noticeable 

difference in trading behavior or performance. Figure S2 compares trading activity 

and payout for the experiment for our two subject populations. This comparison is 

important because undergoing neuroimaging might affect behavior, so that the 

behavior of our scanned population might be different in some way from the 

population of non-scanned behavioral subjects. On average, subjects traded in 19.31 

rounds (std. dev. 9.19, range 2-44). The mean payout in the experiment was $20.86 

(std. dev. 5.27, range 4.07-45.62). There are no significant differences between the 

two groups in either the number of trades (p=0.339, Wilcoxon rank-sum test; p = 

0.3223, Kolmogorov-Smirnov test) or in payouts (p = 0.2164, Wilcoxon rank-sum 

test; p = 0.1551, Kolmogorov-Smirnov test).    

 

Individual characteristics associated with trading behavior and performance. We used 

multiple regression analysis to explore whether demographic factors were 

associated with trading behavior and performance.  Table S3 reports the results 

from ordinary least squares regressions of: (Model 1) payout on demographic 

variables and quiz scores; (Model 2) Number of trades on demographic variables 

and quiz scores; (Model 3) Quiz score on demographic variables.  The results from 

Model 1 suggest that the main subject-level variable that influences payouts are task 



comprehension and trading activity: scoring one additional question right on the 

pre-experiment quiz is associated with earning an additional $0.75. On average 

trading is costly: each additional trade results in an average loss of $0.14. Note 

however that the relationship of trades to payouts is nonlinear: the very highest 

earners (roughly, the highest 20%) trade more than average, as do the lowest 

earners.  Furthermore, any subject can guarantee himself or herself the mean 

payout in a given session by not trading at all. Cancelled trades, potentially a 

measure of subject confusion, had a negative but statistically insignificant 

association with payout. Model 2 suggests that Asian subjects make on average 

almost 4 more trades than Black or White subjects; and Model 3 shows that on 

average male subjects score on average almost ½ point higher on the pre-

experiment quiz relative to female subjects.  

 

Imaging Protocol  

 

Image acquisition and analysis. The imaging was conducted on three 3.0T  Siemens 

Magentom Trio scanners at the Virginia Tech Carilion Research Institute. Two 

scanners are located in Roanoke, VA and one in Blacksburg, VA. Two separate 

cohorts of imaging data were collected for this experiment: one in October 2011 and 

January 2012, and another in April 2012.  The first cohort comprised of 27 healthy 

subjects recruited in accordance with a protocol approved by the Virginia Tech 

Institutional Review Board.  High-resolution T1-weighted scans were acquired using 

a magnetization prepared rapid gradient echo sequence.  Functional imaging were 

acquired with a repetition time of 2000 ms and an echo time of 30 ms.  Twenty-six 

4-mm slices were acquired parallel with the anteroposterior commissural line, 

yielding functional voxels that were 3.4mm x 3.4mm x 4mm.  The second cohort of 

17 healthy subjects were recruited in the same method and matched the parameters 

of the high-resolution scans from the initial cohort.  Functional images from cohort 

two were acquired with a repetition time of 2000 ms and an echo time of 25 

ms. Thirty-seven 4-mm slices were acquired 30° off the anteroposterior 

commissural line, yielding functional voxels that were 3.4mm x 3.4mm x 4mm. 



 

Image preprocessing. Images were analyzed using SPM8 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). Slice timing correction was 

first applied to temporally align all the images. Motion correction to the first 

functional image was performed using a six-parameter rigid-body transformation. 

Images were subsequently spatially normalized to the Montreal Neurological 

Institute template by applying a 12-parameter affine transformation, followed by 

nonlinear warping using standard basis functions. Finally, for GLM analyses, the 

images were smoothed with an 8 mm isotropic Gaussian kernel and then high-pass 

filtered (128 s width) in the temporal domain. 

 

Imaging Analyses 

 

General linear model. We initially estimated the following general linear model 

(GLM) of BOLD responses with an AR(1) structure. In each voxel we regressed the 

preprocessed, spatially smoothed BOLD signal on (1) Indicators for each each of the 

four different stimulus screens (Positions, Order Entry, Trading Results, and 

Dividends and Interest); (2) Separate indicators for trials where subjects bought 

and sold (i.e., trials where subjects saw “You Bought” or “You Sold” messages); (3) 

Parametric regressors for the expected dividend yield and the return at the time 

outcomes are revealed (the “Trading Results” screen). The expected dividend yield 

in round t is E[𝑑𝑡] 𝑝𝑡 = 0.7 𝑝𝑡⁄⁄ . Return is defined as (𝑝𝑡 − 𝑝𝑡−1) 𝑝𝑡−1⁄ : the fractional 

change in price from the previous round. All regressors of interest are convolved 

with a canonical hemodynamic response function (Friston et al., 1998). We also 

included the time series of 6 head motion parameters estimated from preprocessing 

as a regressor of no interest, to control for residual head motion in the time series. 

 

Imaging results. An overview of the results from this analysis is given in Table S4.  

We found strong responses to “You Bought” and “You Sold” messages in the ventral 

striatum, relative to our baseline of “No Trade” messages (both results are 

significant at the 5% level, after adjusting significance levels for multiple 



comparisons across the whole brain using Family Wise Error (FWE) corrections). 

We found few differences in neural responses to “Buy” and “Sell” messages, even at 

much more liberal significance thresholds (p-value 0.005, uncorrected), save a small 

cluster in the middle frontal gyrus for the contrast “Bought”-“Sold”.   

 

We also found that neural activity responded negatively to expected dividend in the 

ventral striatum and subgenual cingulate cortex. This result is consistent with the 

analysis in the main text; the expected dividend is the inverse of the price, times a 

constant. In addition we found neural activity in a number of brain regions 

associated with theory-of-mind tasks, such as the superior temporal gyrus. We 

found few neural correlates of return except at very liberal thresholds, where we 

note a small cluster in the superior temporal gyrus, in a region where neural activity 

is often associated with theory-of-mind tasks.  

 

Trial to trial data extraction. We extracted the trial-to-trial data as follows: After 

preprocessing (see above), we filtered the (unsmoothed) time course of BOLD 

responses in each voxel using a high-pass filter with bandwidth 128s. We then 

removed any remaining linear trend by regressing the filtered time course in each 

voxel on a constant and linear time trend and extracting the residuals. Next, we 

estimated the baseline BOLD responses to each of the four different stimulus 

screens (Positions, Order Entry, Trading Results, and Dividends and Interest), using 

a GLM of the BOLD responses with an AR(1) serial correlation structure. The model 

included regressors for each of the four screens, each convolved with a canonical 

hemodynamic response function (3), as well as the time series of 6 head motion 

parameters estimated from preprocessing. This model estimates neural responses 

that are associated with a given stimulus, but not the neural computations that are 

involved in assessing the stimulus. The (whitened) residuals from this regression 

capture trial-to-trial variation in BOLD responses.  

 

The next step was to compute, for each subject and each voxel, the neural response 

to each of the 50 “Trading Results” screens. We approximated the peak 



hemodynamic response by interpolating between the two volumes acquired closest 

to 5 seconds after the stimulus onset. The result is a (50 x approximately 25,000 

voxels) matrix of data containing the residual variation in BOLD responses to new 

trading and price information. From this we can examine the trial-to-trial responses 

in any region of interest.  To facilitate cross-subject comparison, we normalized the 

response in each voxel to have mean 0 and standard deviation 1, then averaged the 

normalized responses in each region of interest (e.g. the NAcc). 

 

Regions of interest. For the bilateral NAcc region of interest (ROI), we used an 

anatomical mask consisting of a 6mm-radius sphere centered on MNI coordinates 

(±12,8,-8). The resulting mask is shown in Figure S2 (Panel A) and contains a total of 

24 voxels. This ROI contains the peak signal from the Neurosynth reverse-inference 

“reward” map (Figure S2B). The map shows regions that are more likely to be 

reported in studies that use the term “reward” frequently (329 studies of the 5089 

in the Neurosynth database as of July 10, 2013) (4). The peak z-scores for this 

reverse-inference map are located at MNI (10,12,-10) (right NAcc) and (-10 , 10 ,-8) 

(left NAcc). Both locations are contained in our NAcc mask. We also list the top 

terms from the structure-to-function reverse inference feature map located at the 

center of our NAcc ROI in Table S5. The table shows terms that appear with high 

frequency from the 167 studies in the Neurosynth database that report activation 

within 6 mm of MNI coordinates (12,8,-8).  Prominent features at this location 

include “reward”, “incentives”, and “feedback”.  

 

For the Anterior Insula ROI, we used a 6mm radius sphere, centered on MNI 

coordinates (36,24,2) located in the right Anterior Insula. These coordinates 

correspond to the peak “risk prediction” signal from (5), after converting from 

Talairach to MNI coordinates. 

 

In the interval regressions below (Table S7) we employ as control variables neural 

activity at the time of the “Trading Results” screen extracted from ROIs in the 

Amygdala, left Dorsolateral Prefrontal Cortex (lDLPFC), and right Temporoparietal 



junction (rTPJ).  The Amygdala ROI is based on an the Automated Anatomical 

Labeling (AAL) Amygdala mask (6). The lDLPFC mask is a 6mm-radius sphere 

centered at MNI (-40,44,18), and the rTPJ sphere is a 6mm-radius sphere centered 

at MNI (56,-56,16).  We also employ an additional ROI, in the left Intraparietal 

Sulcus (lIPS) as a control region for our brain-behavior association analysis.  The 

lIPS ROI is a 6mm-radius sphere centered on MNI (-31,-62,48).   

 

Brain-Behavior Associations 

 

The scatterplot in Figure 4D in the main text shows that buying when neural activity 

in the nucleus accumbens is high is associated with low overall profits in the 

experiment. Similarly, the scatterplot in Figure 4E shows that selling when neural 

activity is in the right anterior insula is high is associated with higher profits.  For 

both of these analyses, the variable on the x-axis is determined by generating a 

dependent variable indicating whether the subject bought (or in Figure YY, sold) in 

round t, and then regressing this binary dependent variable on the 5-period moving 

average of neural activity in the given region of interest at round t-1. The x-axis plots 

the marginal effects from these regressions: the change in probability of buying (or 

selling) with respect to a 1 unit change in our measure of neural activity.   The y-axis 

in these plots shows each subject’s earnings for the experiment, in US dollars. 

 

Figure S3B illustrates that we find no significant brain-buying relationship in the 

right anterior insula ROI. Figure S4 shows the results from the comparison of both 

brain-buying and brain-selling relationships with earnings in two additional 

regions-of-no-interest. Figures S4A and S4B show brain-trading relationships in the 

rTPJ. Figures S4C and S4D show brain-trading relationships in the lIPS.  We selected 

the rTPJ for its association with theory-of-mind tasks (7), and the lIPS for its 

association with numerosity (8).  We find no significant association between 

earnings and the neurobehavioral metrics (either brain-buying or brain-selling) 

from either the rTPJ or lIPS.  

 



Table S6 shows linear regression analyses that illustrate relationships between the 

NAcc-buying and insula-selling metrics and earnings, with increasing numbers of 

control variables. Models 1 and 2 show simple linear regressions of earnings on the 

NAcc-buying association and the insula-selling association, respectively.  Model 3 

includes both measures and adds subject’s score on the pre-experiment quiz. The 

NAcc-buying association and the insula-selling metrics are each independently 

statistically significantly associated with task performance. The model in column 4 

shows that when increased neural activity in the NAcc is associated with subsequent 

buying, earnings are lower, and when increased neural activity in the insula is 

associated with subsequent selling, earnings are higher, after controlling for gender, 

race, and performance on the pre-experiment quiz.  

 

Interval regression analyses 

 

Model. Our order entry procedure elicits a demand curve for the risky asset, for each 

subject in each round. We use the elicited orders, namely the highest price to which 

a subject responds “Buy” and the lowest price to which a subject responds “Sell”, to 

estimate the price at which a subject is indifferent between buying and selling 

(measured as a percentage of the last period’s price). 

 

The experiment protocol presented 5 randomly-ordered stimulus prices each 

trading round (𝑠𝑖𝑡𝑘 ,𝑘 ∈  {1,2,3,4,5}). Subjects indicate whether they prefer to buy, 

hold, or sell if the price is 𝑠𝑖𝑡𝑘  in round t.  We assume that subject i’s demand curve 

𝑥𝑖(𝑝𝑡) for the risky asset in round t is downward sloping in the price pt. Given this 

assumption there is some price 𝑝𝑖𝑡∗  such that 𝑥𝑖(𝑝𝑖𝑡∗ ) = 0. At prices greater 𝑝𝑖𝑡∗ , the 

subject prefers selling, while at prices lower than 𝑝𝑖𝑡∗ , the subject prefers selling.  

 

To study the determinants of demand for the risky asset, we let 

𝑦𝑖𝑡∗ = (𝑝𝑖𝑡∗ − 𝑝𝑡−1) 𝑝𝑡−1⁄  and assume that 𝑦𝑖𝑡∗ ~N(𝑍𝑖𝑡𝛾,𝜎2)  and we estimate the 

coefficients 𝛾 via maximum likelihood. We normalize by the market price in the 



previous round because the price process, and also the response data, has a unit 

root. Thus our dependent variable is the price at which a subject is indifferent 

between buying and selling, expressed as a fraction of the previous round’s price. 

 

Define the categorical variable yit as follows:  

𝑦𝑖𝑡 =

⎩
⎪
⎨

⎪
⎧ −1 𝑖𝑓 𝑝𝑖𝑡∗ ≤ min

𝑘
𝑠𝑖𝑡𝑘

0 𝑖𝑓 min
𝑘
𝑠𝑖𝑡𝑘 < 𝑝𝑖𝑡∗ ≤ max

𝑘
𝑠𝑖𝑡𝑘

1 𝑖𝑓 max
𝑘

𝑠𝑖𝑡𝑘 ≤ 𝑝𝑖𝑡∗
 

We define ait as the highest stimulus price 𝑠𝑖𝑡𝑘 𝑝𝑡−1⁄  to which subject i responds Buy, 

expressed as a fraction of the previous round’s price; and similarly let bit denote the 

lowest stimulus price 𝑠𝑖𝑡𝑘 𝑝𝑡−1⁄  to which subject i responds Sell, again normalizing by 

the previous price; then 𝑦𝑖𝑡∗  lies in the interval [𝑎𝑖𝑡, 𝑏𝑖𝑡] and yit = 0. If we observe Buy 

responses but not Sell responses in round t, then 𝑦𝑖𝑡∗  ∈ [𝑎𝑖𝑡, +∞] and yit = 1. Similarly 

if there are no Buy responses then 𝑦𝑖𝑡∗  ∈ [−∞, 𝑏𝑖𝑡] and yit = -1. 

 

The log-likelihood function is  
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where 1[∙] is the indicator function and Φ(∙) is the cumulative distribution function 

for the standard normal distribution. This approach is known as interval regression 

(cf. (9)). 

 

Under more restrictive assumptions, we can motivate our regression model with 

respect to subject’s beliefs about future returns. Assume that at time t subjects 



maximize the constant absolute risk aversion (CARA) utility function 𝑢(𝑊𝑡+1) =

−𝑒−𝜌𝑊𝑡+1 where 𝑊𝑡 = 𝑐𝑡 + 𝑢𝑡𝑝𝑡, ct is the number of units of the risky asset, ut is the 

number of units of the risky asset, pt is the price in round t of the risky asset, and 𝜌 is 

a measure of risk aversion. If the total return of the risky asset (including the 

dividend) is normally distributed, then subject i’s demand for the risky asset is: 

𝑥𝑖𝑡(𝑝𝑡) =
E𝑡[𝑝𝑡+1 + 𝑑𝑡] − 𝑝𝑡(1 + 𝑟)

𝜌𝜎2
 

When 𝑥𝑖𝑡(𝑝𝑡) = 0, we have 

𝑝𝑖𝑡∗ =
E𝑡[𝑝𝑡+1 + 𝑑𝑡]

1 + 𝑟
 

so under these (admittedly strong) assumptions our fitted values 𝑦𝚤𝑡� = 𝑍𝑖𝑡𝛾� can be 

thought of as an approximation of subject i’s beliefs regarding the present value of 

the risky asset. This expression can be generalized to reflect non-myopic plans. The 

assumption of CARA utility and normally distributed returns is equivalent to 

assuming that subjects have mean-variance preferences; see e.g.  (10),  pages 36-37.  

 

Results. Columns 1 and 2 of Table S7 show the direct relationship on valuation of 

NAcc activity, and returns and dividend yield respectively. Column 3 shows that a 1 

standard deviation change in our measure of NAcc activity is associated with  a 1.1% 

increase in willingness to pay for the risky asset, after controlling for return and 

expected dividend yield.  

 

Motivated by theoretical and experimental research that focuses on asymmetries 

among market participants as an important factor in driving bubbles, we divided 

subjects across all experiments into earning terciles. The model in Column 4 

interacts the tercile of earnings with NAcc activity, and adds additional controls 

including the subject’s lagged average orders and share position as well as 

indicators for each 5-round block in the experiment.   The model in Column 5 adds a 

control variable that measures the subject’s trading behavior. In many rounds, 

subjects respond either only “Buy” or only “Sell” to the stimulus prices, so dropping 

these rounds might result in a considerable loss of power. We therefore code the 



highest “bin” to which subjects responded “Buy ” from 0 to 5, with no buy response 

in the round coded as 0, and by coding the lowest  “bin” to which subjects responded 

“Sell” from 1 to 6, with no sell response in the round coded as 6. We then calculated 

the variable “Buy-Sell midpoint” in round t by taking the average of these two 

numbers.  This variable is a rough measure of the subject’s policy in a given round. 

In addition, this model adds additional controls for neural activity extracted from 

ROIs in the right anterior insula, the amygdala, the right temporoparietal junction 

and the left dorsolateral prefrontal cortex. These variables control for the possibility 

that variations in neural activity across the whole brain, rather than in the NAcc 

alone, are driving the results. The coefficient estimates from model 5 show that in 

the lowest earning subjects, a 1-standard deviation change in our measure of NAcc 

activity is associated with an approximately 2.6% increase in willingness-to-pay for 

the risky asset a number that is both statistically and economically meaningful. 

More accurate measures of NAcc activity are likely to improve the precision of this 

estimate. 

 

Our results concerning the influence of NAcc activity on behavior are robust to 

different specifications of the dependent variable. Results of roughly the same 

significance level and magnitude are achieved when we perform: 1) Linear 

regressions where the dependent variable is the buy-sell midpoint. 2) Tobit 

regressions where the dependent variable is each subjects’ buy orders in a given 

round, normalized by the prior round’s price; alternatively we can use sell orders. 3) 

Ordered probit regressions where the dependent variable is the bin chosen, again 

using either the maximum “Buy” response or minimum “Sell” response.  

  



Supplementary Tables and Figures. 
 

 
Subject Type 

 Behavioral (n = 276) fMRI (n = 44) 
Variable Mean Std. dev. Mean Std. dev. 
VTCRI 0.03 0.18 1.00 0.00 
Sex 0.46 0.50 0.45 0.50 
Asian 0.70 0.45 0.08 0.27 
Black 0.02 0.14 0.07 0.26 
White 0.27 0.44 0.85 0.36 
Age 23.15 4.64 28.43 10.40 
Quiz 3.87 1.27 3.43 1.45 
Payout $20.83 5.29 $21.09 5.19 
Trades 19.46 9.03 18.34 10.19 
Table S1. Subject composition, summary statistics. VTCRI: 1 if subjects 
participated at Virginia Tech Carilion Research Institute; 0 if subjects participated at 
UCLA. Sex: 0 if Female, 1 if Male. Quiz: number of correct answers on the pre-trade 
quiz.  Payout: Earnings for participating in the trading experiment, excluding show-
up fees. Trades: number of times a subject bought or sold in the experiment. 
  



Variable N(obs) Mean Std. Dev. 25% 50% 75% 

Price 800 27.797 19.608 15.965 20.005 30.255 

Price (max) 16 60.416 35.260 30.810 64.300 71.275 

Price (min) 16 13.563 0.687 13.075 13.525 13.760 

Price (final) 16 14.717 1.648 13.940 14.125 14.810 

Volume 800 0.398 0.126 0.300 0.400 0.455 

Rounds with 

Price >14 
16 0.938 0.051 0.920 0.940 0.970 

RAD 16 1.050 0.661 0.449 1.090 1.342 

RD 16 1.047 0.661 0.446 1.088 1.339 

Table S2. Market summary statistics. Price(all): all price observations; 
Price(max), Price(min) and Price(final) are the maximum, minimum, and final round 
prices in each session, respectively. Volume (all) is the normalized volume in each 
session, shown as the fraction of subjects who traded in each round.  RAD: Relative 
Absolute Deviation; RD: relative deviation (see text for details). 
  



  (1) (2) (3) 
  Dependent Variable 
Variable Payout Total trades Quiz score 

 
      

Sex 41.60 2.324* 0.477*** 

 
(48.61) (1.271) (0.156) 

VTCRI 65.86 0.923 -0.327 

 
(68.03) (2.208) (0.299) 

Quiz Score 74.56** 0.539 
 

 
(30.09) (0.634) 

 Black -15.40 3.503 -1.295* 

 
(157.1) (3.556) (0.658) 

Asian 73.80 3.728** 0.0298 

 
(54.17) (1.730) (0.207) 

Total trades -14.41*** 
  

 
(3.839) 

  Cancelled trades -5.972 
  

 
(5.153) 

  Constant 2,021*** 13.63*** 3.662*** 

 
(68.96) (2.818) (0.152) 

Observations 317 317 317 
R-squared 0.093 0.061 0.081 
Number of session 16 16 16 
Session FE Yes Yes Yes 
Robust SE Yes Yes Yes 
Table S3. Determinants of subject behavior. Fixed-effects regressions.  Sex: 0 if 
female, 1 if male.  VTCRI: subjects participated at Virginia Tech Carillion Research 
Institute. Total trades: number of buy and sell transactions. Cancelled trades: 
trades cancelled either because the subject tried to sell and had 0 units of the risky 
asset available, or because the subject responded buy to a price that was greater 
than a price to which the subject responded sell. Robust standard errors in 
parentheses. *** p<0.01, ** p<0.05, * p<0.1.  
  



 

Binary Variables 

Thresholds: p-value FWE 0.05; Cluster Extent k>5 peak MNI coordinates 

Variable Region R/L Brodmann 
Area Voxels Peak 

T x y z 

Bought Ventral Striatum R/L 25 8 6.46 -14 8 -14 

Sold Ventral Striatum R/L 25/47 206 9.05 10 8 -6 

 Inferior Temporal Gyrus R 19 10 6.87 46 -76 -6 

 Inferior Frontal Gyrus L 6/9 72 6.18 -50 8 22 

 Orbitofrontal cortex R 10/11/32 103 5.66 22 48 -10 

 Inferior Frontal Gyrus L 46 12 5.65 -42 32 14 

 Inferior Parietal Lobule L 40 16 5.64 -58 -32 46 

 Cuneus R 17 9 5.30 14 -88 2 

 Anterior Cingulate Cortex R 9/32 11 5.18 10 36 22 

Thresholds: p-value: Uncorrected 0.005; Cluster Extent k>5    
Bought-Sold Middle Frontal Gyrus R 9 18 3.15 38 8 34 

Sold-Bought No significant clusters        

         
Parametric Modulator Variables 

Thresholds: p-value: Uncorrected 0.005; Cluster Extent k>5 peak MNI coordinates 

Variable Region R/L Brodmann 
Area Voxels peak 

T x y z 

EDiv Inferior Parietal Lobule L 40 30 3.76 -54 -48 42 

 Superior Temporal Gyrus R 22/39 8 3.33 62 -64 14 

 Inferior Parietal Lobule R 40 28 3.25 62 -48 46 

 Superior Temporal Gyrus R 22 10 -3.04 58 8 -2 

 Cuneus/Precuneus R  9 -3.32 18 -84 50 

 Middle Frontal Gyrus L 6 9 -3.55 -50 0 46 

 Precuneus L 19 30 -3.75 -14 -84 46 

 
Ventral Striatum/ 

Anterior  Cingulate Cortex L 11/25/32 70 -4.07 -14 12 -14 

Return Superior Temporal Gyrus R 19/22/39 23 2.70 54 -56 14 

Table S4. GLM Results. Bought: indicator for “You Bought” message, convolved 
with a hemodynamic response function. Sold: indicator for “You Sold” message, 
convolved with a hemodynamic response function. EDiv: expected dividend yield 
(parametric modulator) for the risky asset in round t. Return: return for the risky 
asset in round t.  
  



Neurosynth Reverse Inference: MNI (12,8,-8) 
Feature z-score post. prob. 
reward 19.55 0.92 
rewards 13.17 0.92 
incentive 11.6 0.93 
outcome 11.6 0.87 
money 11.13 0.92 
anticipation 10.41 0.89 
monetary 10.32 0.9 
outcomes 9.74 0.88 
win 9.13 0.92 
feedback 7.95 0.82 
Table S5. Neurosynth reverse inference. Showing the 10 features with highest z-
score of 525 entries. The table shows terms that appear with high frequency from 
the 167 studies in the Neurosynth database that report activation within 6 mm of 
MNI coordinates (12, 8, -8). 
Downloaded from http://neurosynth.org/locations/12_8_-8 on July 10, 2013. 
 
  



 
  Model 

Dependent Variable is Earnings ($) (1) (2) (3) (4) 

NAcc-Buying  -13.49***  -11.06*** -12.47*** 

 (3.645)  (3.224) (3.369) 

Insula-Selling  11.59*** 8.236** 8.053** 

  (3.888) (3.147) (3.172) 

Quiz Score   0.594 0.263 

   (0.479) (0.322) 

Black    -8.397** 

    (3.538) 

White    -0.711 

    (3.46) 

Sex    0.0456 

    (1.291) 

Constant 21.65*** 19.98*** 18.76*** 20.82*** 

  (0.78) (0.869) (1.602) (3.813) 

Observations 41 41 41 39 

R-squared 0.273 0.215 0.417 0.538 

Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.  
Table S6.  Brain-behavior associations in the NAcc and the insula predict task 
performance. OLS estimates.  NAcc-Buying: relationship between NAcc activity in 
the 6mm-radius ROI spheres centered at MNI (±12,8,-8) and subsequent buying.  
Insula-Selling relationship between insula activity in the 6mm radius sphere 
centered at MNI (36,24,2) and subsequent selling.  Sex: 0 if female, 1 if male.   
 
  



 
 

Table S7. Determinants of valuation for the risky asset. Interval regression 
estimates. The dependent variable is [ait,bit] where ait is the maximum stimulus price 
to which subject i responded “Buy” in round t, and bit is the minimum price to which 
subject i responded “Sell” in round t. All independent variables are lagged. NAcc: 
mean BOLD response in the 24-voxel bilateral Nucleus Accumbens ROI centered at 
MNI (±12,8,-8). Low Earns: Indicator for subjects in the lowest third of the earnings 
distribution.   Buy-sell midpoint: the midpoint between buy and sell orders. Buy-sell 
midpoint is the average of the previous round’s maximum buy and minimum sell 
orders by bins, numbered from 1 to 5. Missing buy orders were coded as 0 and 
missing sell orders coded as 6. Units: units of the risky asset. rAIns: right Anterior 
Insula. Amyg: Amygdala. rTPJ: right temporoparietal junction. lDLPFC: left 
dorsolateral prefrontal cortex. 
*** p<0.01, ** p<0.05, * p<0.1.  Cluster-corrected standard errors in parentheses. 

  

 Model 

Variable (1) (2) (3) (4) (5) 
NAcc 0.008  0.011** -0.001 0.002 

 (0.005)  (0.005) (0.005) (0.005) 
Low Earns*NAcc    0.037*** 0.026*** 

    (0.011) (0.009) 
Return  0.026*** 0.028*** 0.020** 0.001 

  (0.009) (0.009) (0.009) (0.008) 
Dividend Yield  0.022* 0.021 0.047** 0.039** 

  (0.013) (0.013) (0.023) (0.016) 
Buy-sell midpoint     0.079*** 

     (0.012) 
Units    yes*** yes* 
Units=0 (Indicator)    n.s. n.s. 
4 ROIs: rAIns, Amyg, rTPJ, lDLPFC    n.s. 
Constant 1.000*** 1.001*** 1.002*** 0.908*** 0.932*** 
Low Earns (Indicator)    0.056*** 0.062*** 
Subject FE Yes Yes Yes Yes Yes 
5 round dummies No No No Yes Yes 
Cluster level Subject Subject Subject Subject Subject 
Observations 1745 1829 1745 1745 1745 



 

 
Figure S1.  Payouts and Trading activity.  Each circle represents an individual 

participant.  The light circles are UCLA (behavioral) subjects, and the shade circles 

represent VT (fMRI) subjects. The x-axis shows the number of trades the subject 

made, and the y-axis is the subject’s payout in the experiment.  There are no 

significant differences between the two groups in either the number of trades 

(p=0.339, Wilcoxon rank-sum test; p = 0.3223, Kolmogorov-Smirnov test) or in 

payouts (p = 0.2164, Wilcoxon rank-sum test; p = 0.1551, Kolmogorov-Smirnov 

test).  

  



 
Figure S2. A) NAcc ROI: Two 6mm-radius spheres centered at MNI (±12,8,-8) in the 

nucleus accumbens. There are 12 voxels in each sphere. B) Neurosynth reverse 

inference feature map. This reverse inference map shows z-statistics that measure 

the likelihood that the term “reward” will be associated with a reported activation in 

a given brain region. Image downloaded from 

http://neurosynth.org/features/reward on July 10, 2013. 

 

  



 
Figure S3. A) Insula ROI: A 6mm-radius sphere centered at MNI (36,24,2) in the 

right anterior insula. B) Earnings compared with the estimated brain-buying 

relationship in the insula. We do not find a statistically significant association 

between earnings and the degree to which neural activity in the insula predicts  

buying in the next trading round. 

 

  



 

 
Figure S4. Neurobehavioral control regions. A) Earnings compared with the 

estimated brain-buying relationship in the rTPJ. B) Earnings compared with the 

estimated brain-selling relationship in the rTPJ.  C) Earnings compared with the 

estimated brain-buying relationship in the lIPS. D) Earnings compared with the 

estimated brain-selling relationship in the lIPS.   

 

 
 
 
 
 
 
 
  



INSTRUCTIONS 
 
This experiment is about economic decision-making in an experimental market. If 
you make good decisions, you might earn a considerable amount of money, which 
will be paid to you in US dollars at the end of the experiment. The experiment will 
consist of a series of 50 trading periods in which you will have the opportunity to 
buy or sell shares of an asset that can yield payments in the future.    
 
There are two assets in this experiment: CASH (experimental currency units) and 
STOCK. You begin with 100 units of CASH and 6 shares of STOCK.  
 
STOCK is traded in a market each period among all the experimental subjects, in 
units of CASH.  When you buy STOCK, the price you agreed to pay is deducted from 
your amount of CASH. When you sell STOCK the price you sold at is added to your 
amount of CASH.  
 
Each period, every unit of STOCK earns a low or high dividend of either 0.40 CASH 
per unit or 1.00 CASH per unit. These dividend payments are equally likely, and are 
the same for everyone in each period. However, the dividend in each period does 
not depend on whether the previous dividend was low or high.  
 
CASH earns a fixed interest rate of 5% each period. 
 
At the end of the 50 periods of trading, each unit of STOCK is automatically traded in 
for 14.00 CASH.  Then your experiment CASH units are converted to US dollars at a 
rate of 100 CASH = $1 US, to determine how much you will be paid at the end of the 
experiment.  
 
For example, suppose in a period you have 120 units of CASH and 5 units of STOCK, 
and the dividend is 0.40 per unit of stock. Then your new CASH amount would be a 
5% increase times 120 (a gain of 6) and total dividends of 0.40 x 5 = 2. Your total 
CASH would therefore increase by 6 + 2 = 8 units. Notice that keeping CASH will 
earn a return (5% per period) and using CASH to buy units of STOCK will also yield 
dividend earnings. If you are trying to earn the most money you might think about 
whether keeping CASH or buying STOCK creates more earnings.  
 
Trading 
 
In each period you will be shown a series of 5 prices. You have 2 seconds to make a 
decision. In response to each price, you must quickly state whether you would BUY 
1 unit of stock or SELL 1 unit of stock at that price, or HOLD your current position 
(not buying or selling). If you do not enter a response in time the default choice that 
will be made for you is HOLD. 
 
The highest price for which you select BUY and the lowest price for which you select 
SELL will be entered as “limit orders”. A limit order to buy at a price of 17, for 



example, means you would like to buy at the price of 17 and at any lower price. 
Similarly, a limit order to sell at 11 means you would like to sell at the price of 11 
and at any higher price.   
 
After all participants enter orders, a single market price P* is determined which 
matches the number of people who would like to buy at that price with the same 
number of people who would like to sell. (That is, the number of limit orders to buy 
at price P* or higher equals the number of limit orders to sell at price P* or lower.)  
Participants who responded BUY to prices at or above P* will buy one unit of STOCK 
at P*. Participants who responded SELL to prices at or below P* will sell one unit of 
STOCK at P*.   
 
If there are ties in the number of traders who want to buy and sell at exactly P* then 
a random choice determines which traders will actually BUY or SELL.  If there are no 
orders to BUY, then there are no trades and the last price is reported as the 
minimum price at which traders would SELL, and if there are no orders to SELL the 
reported price is the maximum price at which traders would BUY.  
 
Trading restrictions: 
 
Saying that you will BUY at a higher price than you are willing to SELL at is 
considered a trading mistake, and is not allowed. If this happens your orders will be 
canceled for that trading period (the same as choosing HOLD). 
 
Also, you must have enough CASH to pay the price of STOCK you would like to BUY. 
If you do not have enough CASH to buy stocks, your order will be canceled. You also 
cannot SELL a share of stock if you have no available shares.  
 
Using the keyboard to trade: 
 
Enter SELL by pressing 1, HOLD by pressing 2, and BUY by pressing 3 on your 
keyboard. 
 
Trading practice:  
 
Before the experiment begins you will have the opportunity to practice trading 
during 3 practice trading periods. Your decisions during these practice rounds will 
not count towards your payment for the experiment.  
 
Experiment preview: 
 
Each trial consists of the following screens POSITIONS, ORDER ENTRY, TRADING 
RESULTS, and DIVIDENDS and INTEREST. Each of these is shown below.  In 
between each screen you will briefly see a fixation cross.  
  
  



 
The POSITIONS screen shows your current holdings of STOCK and CASH, the most 
recent traded price for STOCK, and a price history graph. 
 

 
 
The ORDER ENTRY screen is where you enter limit orders. You will see a price. 
Press 1, 2, or 3 to SELL, HOLD or BUY.  You will see this screen 5 times per period. 
 

 
 
  



The TRADING RESULTS screen shows the market price and whether you bought 
sold, or held that trading period.  
 

 
 
 
The DIVIDENDS and INTEREST screen shows the total dividends you earned that 
trading period from shares of stock, and the INTEREST you earned that round on 
your CASH holdings.  
 

 
 
 
  



 

Quiz [Correct answers are in italics.] 

 

Subject ID: _____________ 
Session: _____________ 
 

1. During order entry you press BUY in response to a price of 8.52 and SELL in 
response to a price of 7.89.  What will happen to your orders for that period? 

a. They’ll be entered as usual 
b. They’ll be canceled 

 
2. During order entry the highest price to which you respond BUY is 16.78 and 

the lowest price to which you respond SELL is 17.22.  The market price is 
16.56 for that period. You will: 

a. BUY one unit at 16.78 
b. BUY one unit at 16.56 
c. SELL one unit at 16.56 
d. SELL one unit at 17.22 
e. Not trade 

 
3. You have 200 units of CASH at the start of a trading period and no STOCK. 

You do not trade that period. How much CASH do you have at the beginning 
of the next period? 

a. 200 
b. 205 
c. 210 
d. 190 

 
4. Your account has 5 STOCK and 100 CASH at the start of a trading period, and 

you do not BUY or SELL during that period.  The dividend for that round is 
1.00.  How much CASH do you have at the start of the next round? 

a. 105 
b. 110 
c. 100 
d. 114 

 
5. After the final trading period, you have 4 remaining units of STOCK.  The 

market price in the final period is 29. How many units of experiment CASH 
do you receive in exchange for your STOCK? 

a. 4 
b. 29 
c. 56 
d. 116 
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