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Abstract

How does guilt affect participation in providing public goods? We characterise
and analyse completely mixed symmetric equilibria (CMSE) in participation games
where players are guilt averse. We find that relative to material preferences, guilt
aversion can: facilitate the existence of CMSE; increase or decrease participation;
and imply that group size has a non-monotonic effect on participation. Using our
equilibrium characterisation we also re-analyse experimental data on participation
games and find a low, but positive, guilt sensitivity parameter.
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1 Introduction

Social dilemmas involve conflicts between private and group incentives. One important
class of social dilemma involves the decision to participate in the provision of a discrete
public good (Palfrey and Rosenthal 1984, P&R). In this setting, which we refer to as a
participation game, each individual decides whether to participate, and when a threshold
number of participants is reached, the public good is provided. The decision to partic-
ipate is characteristic of strategic and economic situations ranging from the volunteer’s
dilemma to referendum voting to international agreements such as the Kyoto Protocol.
Social dilemmas such as public goods games and participation games typically have Nash
equilibria involving no cooperation. Yet evidence from both the lab and field suggests
that people do contribute to public goods, volunteer, and participate.
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‡Virginia Tech University; alecsmith@vt.edu.
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One such motivation for participation may be the desire to avoid disappointing or
“letting down” one’s co-players, also known as guilt aversion (Dufwenberg 2002; Charness
& Dufwenberg 2006; Battigalli & Dufwenberg 2007). Emotions such as guilt are thought
by psychologists to be central to the facilitation of social behavior (Chang & Smith 2015).
In addition, guilt aversion may provide a microfoundation for the decision to participate,
as the shared expectation of contributing to the public good may constitute a moral
expectation or social norm (Charness & Dufwenberg 2006). Because guilt aversion is a
belief-dependent motivation, in this paper we employ the toolbox of psychological game
theory (Geanakoplos, Pearce & Stacchetti 1989, Battigalli & Dufwenberg 2009) to study
how guilt affects the decision to participate.

In general, participation games have many asymmetric Nash equilibria, both in pure
and mixed strategies. Many authors have thus argued that completely mixed symmetric
equilibria (CMSE) are attractive (easier to learn and coordinate on, e.g. P&R 1984;
Dixit & Olsen 2000). We focus on such equilibria and explore three issues: equilibrium
existence; comparative statics; and empirical estimates of guilt aversion.

For the general class of participation games with an arbitrary provision threshold and
number of players, we show that, as with material preferences, with guilt aversion, there
exist at most two CMSE. With a few exceptions that we discuss below, comparative stat-
ics results carry through from the material participation game to the participation game
with guilt aversion. Our analysis demonstrates that despite the additional complexities
resulting from belief-dependent motivations, guilt aversion generates largely intuitive re-
sults.

In the volunteer’s dilemma (the participation game with a provision threshold of one),
guilt aversion implies a unique CMSE in which the probability of participation is increasing
in the guilt sensitivity parameter. The equilibrium participation rate is decreasing in the
participation cost and increasing in the public good benefit. In contrast to the material
game, for high cost-benefit ratios, the equilibrium probability of participating can be
increasing in the number of players in the game. However, for lower cost-benefit ratios,
equilibrium participation rates are decreasing in the number of players, as in the material
payoff game.

In participation games with a provision threshold greater than one, for high cost-
benefit ratios where no CMSE exist in the material game, guilt aversion can imply exis-
tence of generically two CMSE. As in the game with material preferences, when there are
two equilibria an increase in the cost-benefit ratio decreases (increases) the equilibrium
participation rate in the high (low) participation equilibrium; an increase in the number of
players reduces equilibrium participation rates; and an increase in the provision threshold
increases equilibrium participation rates. An increase in guilt sensitivity decreases par-
ticipation in the low participation equilibrium and increases it in the high participation
equilibrium.

Using our equilibrium characterisation, we re-analyse existing experiments on par-
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ticipation games to estimate the average guilt sensitivity parameter. We contrast our
estimates with existing measures in the literature to comment on the portability of guilt
aversion across different strategic environments. Although our estimates vary widely, they
are, largely, positive and in a range between 0 and 1. The empirical analysis is especially
straightforward for the volunteer’s dilemma, for which both the material game and the
game with guilt aversion have a single CMSE. In general participation rates in these games
are somewhat greater than the material CMSE prediction, consistent with the idea that
guilt aversion and the concern for other’s disappointment may motivate participation.
We do not suggest that guilt aversion is the sole factor driving participation, but this
analysis provides empirical support for the idea that guilt aversion motivates the decision
to participate.

Our work adds to a literature studying behavioural preferences in participation games.
Existing contributions include Palfrey & Rosenthal (1988) on altruism, Pérez-Mart́ı &
Tomás (2004) on warm-glow and regret, and Dufwenberg & Patel (2017) on reciprocity.
In addition, a small literature looks at the implications of guilt in linear public good games
including Dufwenberg et al. (2011) and Dhami et al. (forthcoming).

Rothenhäusler et al. (2018) also study guilt in participation games. Their notion of
shared guilt is, however, substantially different from ours. They model agents who expe-
rience (belief-independent) guilt from supporting an immoral activity, where preferences
are private information. By contrast, we apply a psychologically grounded, complete
information model of belief-dependent guilt to a standard participation game.

Experimental studies of guilt aversion, including Charness & Dufwenberg (2006), Van-
berg (2008), Ellingsen et al. (2009), and Khalmetski et al. (2015), and Bellemare et al.
(2017) largely focus on reduced-form analyses of the relationship between second-order
beliefs and behaviour in trust or dictator games. A few papers estimate guilt sensitivities
directly. Attanasi et al. (2016) estimate guilt sensitivities using data from a laboratory
trust game. Bellemare et al. (2011) report estimated guilt sensitivities from a four-player
game. We will discuss how our estimates of guilt sensitivity compare with such studies
later.

We proceed as follows. Section 2 presents P&R’s participation game and Section 3 our
model of guilt based on Battigalli & Dufwenberg (2007). Section 4 contains our theoretical
results on the effect of guilt on participation: implicitly characterising equilibria (4.1),
understanding existence (4.2) and comparative statics (4.3). Section 5 applies our analysis
to existing experimental data to estimate guilt sensitivities and Section 6 concludes.

2 The participation game

Consider the following participation game as in P&R. Let N = {1, . . . , n} denote the set
of players. The set of strategies available to each player i is Si = {0, 1}. Each player i
chooses a binary strategy si ∈ Si, with strategy profiles given by s = (s1, . . . , sn). We
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refer to si = 1 as participate and si = 0 as abstain. The threshold for provision of the
public good is w ∈ [1, n).1 Let

∑
i si = m refer to the number of participants.

A mixed strategy for player i is a probability distribution σi ∈ ∆(Si), where ∆(X)
denotes the collection of probability measures over the set X. The profile of strategies
of all but player i is given by σ−i = (σj)j 6=i, and the complete profile of mixed strategies
for all players is given by σ = (σi)i∈N . A mixed strategy Nash equilibrium is a strategy
profile σ∗ such that for every player i, every action in the support of σ∗i is a best response
to σ∗−i. We assume that players do not actually randomize, but that randomized choices
may be interpreted as an expression of players’ beliefs. We defer a formal presentation of
beliefs to the next section, where we make this interpretation explicit.

Payoffs are given by πi(s) as follows:

πi(si, s−i) =


v if si = 0 and m ≥ w

0 if si = 0 and m < w

v − c if si = 1 and m ≥ w

−c if si = 1 and m < w

(1)

where 0 < c < v.
The participation game has many pure strategy Nash equilibria where exactly m = w

players choose to participate and the rest abstain; if w > 1, there is also one where
all players abstain. It also has many mixed strategy Nash equilibria where there are
three types of players: those who participate with probability 1, those who abstain with
probability 1, and those who participate with probability σi ∈ (0, 1).

Given the many asymmetric equilibria, we focus on completely mixed symmetric equi-
libria throughout (CMSE): that is, we consider equilibria where players view the strategy
choices of their co-players as independent and identically distributed random variables.
To define the CMSE of P&R’s game, we assume that every player i believes that each
of his n − 1 co-players independently chooses to participate with probability p, so that
σi = p for all i, and denote the probability of abstaining by q = 1 − p. Under these
assumptions, the number of participants (m) has a binomial distribution. Let ρ(w;n, p)
be the probability of a player being pivotal for provision of the public good (i.e. the
probability that exactly m = w − 1 of i’s n − 1 co-players choose to participate). Using
the binomial probability mass function,

ρ(w;n, p) =
(
n−1
w−1

)
pw−1(1− p)n−w. (2)

Let F (k; r, p) be the probability that out of r players, k or fewer participate when each
participates with probability p. Using the CDF of a random variable that follows a
binomial distribution,

F (k; r, p) =
k∑
i=0

(
r

i

)
pi(1− p)r−i. (3)

1Assuming w < n ensures that there are multiple efficient pure strategy Nash equilibria.
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Observation 1 (cf. P&R equation 1.3). For all n ≥ 2, n > w ≥ 1 and v > c > 0, a
CMSE is a probability p∗ satisfying

ρ(w;n, p∗) =
c

v
. (4)

Proof: If player i chooses to abstain, then at least w of the remaining n− 1 players must
choose participate for the good to be provided. Thus i’s expected payoff from abstaining
is (1−F (w−1;n−1, p))v. If i chooses to participate, then at least w−1 of the remaining
n− 1 players must choose to participate for the good to be provided. Thus i’s expected
payoff of participating is (1− F (w − 2;n− 1, p))v − c. In a CMSE i must be indifferent
between his two options. Equating the two expected payoffs gives condition (4). �

Equation (4) shows that in equilibrium, the probability of being pivotal for provision
is equal to the cost-benefit ratio. This makes intuitive and economic sense: in equilib-
rium, the expected payoff from contributing is equal to the (certain) cost and players are
indifferent between the two actions.

An important special case of the model is where w = 1, referred to as the volunteer’s
dilemma.

Observation 2. In the volunteer’s dilemma, for all n ≥ 2 and v > c > 0, there exists a
unique CMSE. It is described by

p∗ = 1−
( c
v

) 1
n−1

. (5)

Proof: Substitute w = 1 into (4) and solve for p. �

In the volunteer’s dilemma with material preferences, a unique CMSE exists. To
understand equation (5) more intuitively, rewrite it as qn−1 = c

v
. Thus in a CMSE, the

cost-benefit ratio of participating is equal to the probability of being pivotal for provision
(i.e. the probability that n− 1 players do not participate).

Comparative statics are very intuitive. The equilibrium probability of participating
is increasing in the benefit of the public good and decreasing in the cost of participation
and the number of players (a higher n implies a lower probability of being pivotal for
provision, thus less incentive to participate).

For w ≥ 2, there may be zero, one or two CMSE.

Observation 3 (cf. P&R proposition 2). For all n ≥ 2, n > w ≥ 2 and v > c > 0,

a. if c
v
> ρ(w;n, w−1

n−1 ), then there exists no CMSE;

b. if c
v

= ρ(w;n, w−1
n−1 ), then there exists one CMSE;

c. if c
v
< ρ(w;n, w−1

n−1 ), then there exist two CMSE.
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Proof: Recall equilibrium condition (4), ρ(w;n, p∗) = c
v
. Since ρ(w;n, p) is the proba-

bility mass function of a discrete variable following a binomial distribution, defined by
(2), ρ(w;n, 0) = ρ(w;n, 1) = 0, ρ(w;n, p) is strictly increasing for all p ∈ [0, w−1

n−1 ) and

strictly decreasing for all p ∈ (w−1
n−1 , 1]. As c

v
∈ (0, 1), simply compare ρ(w;n, w−1

n−1 ) with c
v

to determine for how many values of p condition (4) holds. �

For some intuition, reason as follows. If co-players participate with probability one, i
should abstain. If they abstain with probability one, i should also abstain. Whether there
will exist some participation probability in the middle such that i is indifferent between
his two actions depends on c relative to v. If c is too large then although the probability
of being pivotal does increase as the probability that co-players participate increases, it
does not increase enough, thus no equilibrium exists.

The figure below illustrates the three possible cases.

Figure 1: Equilibria of the participation game with
n = 4 and threshold w = 2.

(a) No equilibria (b) One equilibrium (c) Two equilibria

Note: For n = 4 and w = 2, the solid line in each panel plots the the probability of being
pivotal, ρ(w;n, p), over p. A CMSE is where ρ(w;n, p) = c

v . The dashed line in each panel
illustrates a different value of c

v .

In panel (a) the cost-benefit ratio is so high that no CMSE exist, in panel (b) it is
lower so one CMSE exists, and in panel (c) it is lower still so two CMSE exist. Overall,
non-existence of CMSE is caused by players not having enough incentive to participate.

Finally, note the comparative statics. Where two CMSE exist, an increase in c
v

in-
creases participation in the CMSE with lower participation and decreases it in the CMSE
with higher participation. An increase in the number of players, reduces participation in
both CMSEs. An increase in w increases participation in both CMSEs.

3 Guilt aversion and psychological Nash equilibrium

Guilt aversion captures the psychological disutility from disappointing one’s co-players.
In this section we review the notions of guilt aversion (Battigalli & Dufwenberg 2007) and
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psychological Nash equilibrium (Geanakoplos et al. 1989) as they apply in our setting.

3.1 Guilt aversion

To model guilt aversion, we need to specify players’ beliefs. Each player i has a first-order
belief αi ∈ ∆(S−i) about the strategies of the other players. Let α−i = (αj)j 6=i denote the
first-order beliefs of all players save player i, then α = (αi, α−i) is a profile of first-order
beliefs.

Player i also has second-order beliefs βi about the first-order beliefs of each co-player.
Most generally, player i’s second-order beliefs might allow for correlation between the
actions of his co-players and their beliefs. Here, we assume that higher-order beliefs
are degenerate point beliefs, so that βi is identified with an array of first-order beliefs:
βi = (βij)j 6=i, where βij ∈ ∆(S−j). Then β = (βi)i∈N is a profile of second-order beliefs.2

Before the game is played, player j can calculate his expected payoff

π̄0
j (sj) =

∑
s−j∈S−j

αj(s−j)πj(sj, s−j),

given his strategy sj and his first-order beliefs αj about the strategies s−j of the other
players. The expression

Dj((sj, s−j), αj) = max{0, π̄0
j (sj)− πj(s)} (6)

measures how much player j is disappointed or “let down” at the end of the game. After
the game is played, if i knew j’s beliefs αj, he could calculate how much of Dj is due to
his own behaviour:

Gij(s, αj) = Dj(s, αj)−min
s′i

Dj((s
′
i, s−i), αj). (7)

A guilt averse player i then chooses si to maximize the expected value of

ui((si, s−i), α−i) = πi(s)−
∑
j 6=i

θijGij(s, αj), (8)

with respect to player i’s second-order beliefs, where θij ≥ 0 is a parameter capturing
player i’s guilt from disappointing player j.3

2Rabin (1993), Dufwenberg & Kirchsteiger (2004) and Battigalli & Dufwenberg (2007) impose a
similar condition.

3As noted by Battigalli & Dufwenberg (2007, 2009), a simpler formulation where players dislike
other’s disappointment: ui((si, s−i), α−i) = πi(s) −

∑
j 6=i θijDj(s, αj) results in the same best response

correspondence. We focus on the definition of guilt in Equations 7 and 8, though we view both guilt and
concern for other’s disappointment as plausible motivations in participation games.
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3.2 Psychological Nash equilibria with guilt aversion

A psychological Nash equilibrim (Geanakoplos, Pearce & Stacchetti 1989) with guilt aver-
sion is a profile of behavior and beliefs such that strategies are best responses to beliefs,
and beliefs are correct.

Definition 1. A psychological Nash equilibrium with guilt aversion is a tuple (σ, α, β)
such that

1. For each player i and beliefs αi, for all si in the support of σi,

si ∈ arg max Eαi,βi [ui((si, s−i), α−i)] (9)

2. For all i ∈ N , and for all j 6= i, αi = σ−i = βji

As noted above, our focus is on completely mixed symmetric equilibria with guilt aver-
sion.4 Therefore, we consider a game where each player i’s preferences are captured by
the following utility function:

ui((si, s−i), α−i) = πi(s)− θG(s, α−i), (10)

where θij = θ and G(s, α−i) =
∑

j 6=iGij(s, αj).

Definition 2. A completely mixed symmetric psychological Nash equilibrium with guilt
aversion is a psychological Nash equilibrium with guilt aversion (σ, α, β) such that each
player believes that all co-players independently choose their strategies, and that for all i,
j, and k ∈ N such that i 6= j and j 6= k, σi = αji = βkji = p ∈ (0, 1), where αji denotes
the entry corresponding to player i in αj and βkji is the entry corresponding to player i
in βkj.

Definition 2 says that a CMSE of the participation game with guilt aversion is a
psychological Nash equilibrium where each player believes that each other player’s partic-
ipation decision is an independent Bernoulli random variable with probability p. Notice
that this definition also includes CMSE of the material participation game, which we
obtain by setting θ = 0.

4 Guilt and participation

In this section we characterise and provide comparative statics results for completely
mixed, symmetric psychological Nash equilibria of the participation game with guilt aver-
sion. We give special attention to the volunteer’s dilemma, for which we provide an
analytic solution.

4Observation 2 of Battigalli & Dufwenberg (2007) establishes that all of the pure strategy equilibria
of the material payoff game are also equilibria of the psychological games with (simple) guilt aversion.
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4.1 CMSE with guilt

Our first result allowing for guilt aversion states the condition characterising a CMSE of
the participation game.

Proposition 1. For all n ≥ 2, n > w ≥ 1, v > c > 0 and θ ≥ 0, a CMSE is a p∗

satisfying

ρ(w;n, p∗)(1 + θG̃) =
c

v
, (11)

where G̃ = G/v = (n− 1)(1− F (w − 1;n− 1, p∗)) + (w − 1)ρ(w;n, p∗).

Proof: See appendix.

The left hand side of equation (11) is the expected marginal benefit of participating
normalised by v. If player i is not pivotal, his marginal benefit of participating is zero. If
i is pivotal (which occurs with probability ρ(w;n, p∗)) and he participates, his normalised

material marginal benefit is 1 and his normalised guilt-alleviation marginal benefit is θG̃.
The right hand side of equation (11) is the normalised marginal cost of participating.

Notice how the equilibrium condition compares to that with material preferences,
condition (4). If θ = 0 the two conditions are identical. Each player must be indifferent
between participating and not, so the equilibrium probability equates the probability of
being pivotal with the material cost-benefit ratio. If θ > 0, conditions (4) and (11) are

identical other than θG̃ > 0 being included in the left-hand side of condition (11).

To understand G̃, consider when i would feel guilty. The only way that j can feel
disappointed is if j expected the good to be provided and it is not. Player i will not
feel guilty for j’s disappointment if i participated as there is nothing more i could do to
ensure provision. If i abstained, then he only feels guilty for j’s disappointment if i is
pivotal for provision (i.e. w − 1 other players participate), otherwise i’s choice could not
affect provision. Guilt aversion thus endogenously increases the value of participation as
by participating i can avoid the possibility of feeling guilty for j’s disappointment.

Notice how G̃ reflects the asymmetry in the guilt that i would feel towards partici-
pating and abstaining co-players. If j abstained then he expected that the good would
be provided with probability (1− F (w− 1;n− 1, p∗)); if j participated then he expected
provision with probability (1− F (w − 1;n− 1, p∗)) + ρ(w;n, p∗). Thus i would feel more
guilty towards each of the w − 1 participants than each of the n− w abstainers.

It is difficult to see the implications of guilt for the nature of equilibria in terms of
existence, multiplicity and comparative statics from condition (11). We now examine
these issues more closely.

4.2 Existence of CMSE with guilt

With material preferences we noted that there exists a unique CMSE in the volunteer’s
dilemma. The same is true when players are guilt averse.
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Proposition 2. In the volunteer’s dilemma, for all n ≥ 2, v > c > 0 and θ ≥ 0 there
exists a unique CMSE. This CMSE is characterised by

p∗(c, n, v, θ)

= 1−

(
2c

v (1 + θ (n− 1)) +
√
v(v + θ(n− 1)

[
v(n− 1)θ − 4(c− v

2
)
]
)

) 1
n−1

. (12)

Proof: See appendix.

Thus within the class of CMSE, guilt does not create an equilibrium multiplicity problem
in the volunteer’s dilemma.

The effect of guilt in participation games with a higher threshold is more interesting.
Observation 3 stated that with material preferences and w ≥ 2 there may be zero, one or
two CMSE. Allowing for guilt, we have the following result.

Proposition 3. For all n ≥ 2, n > w ≥ 2 and v > c > 0, there exists θ∗ > 0 such that

a. if c
v
≥ ρ(w;n, w−1

n−1 ), then for all θ > 0 there exist two CMSE;

b. if c
v
< ρ(w;n, w−1

n−1 ), then

i. for θ > θ∗ there exist two CMSE;

ii. for θ = θ∗ there exists one CMSE;

iii. for θ < θ∗ there exist no CMSE.

Proof: See appendix.

Contrast how this result differs from Observation 3. There are three cases. If there
are two CMSE in the game with material preferences, then there remain two CMSE
in the game with guilt. If there is one CMSE in the game with material preferences
then there are two CMSE in the game with guilt. If there are no CMSE in the game
with material preferences, then if players are only slightly guilt averse then there are no
CMSE. However if they are sufficiently guilt averse then there are generically two CMSE.
Thus guilt aversion can help the existence of CMSE.

The intuition as to why guilt facilitates existence of CMSE is straightforward. As dis-
cussed after Observation 3, non-existence of CMSE with material preferences was caused
by too little incentive to participate. Guilt aversion endogenously increases incentives to
participate as not doing so can disappoint co-players if the good is not provided and the
player is pivotal. If players are sufficiently sensitive to guilt (θ ≥ θ∗), then these incentives
to participate are sufficiently high and the existence of a CMSE follows.

The figure below illustrates the point graphically.
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Figure 2: The effect of guilt on participation

0 0.2 0.4 0.6 0.8 1

p

0

0.2

0.4

0.6

c/v
0.8

1

1.2

1.4
n = 4, w = 2

θ = 0.00
θ = 0.40
θ = 0.80
θ = 1.20

Note: For n = 4 and w = 2, this figure plots the normalised marginal
benefit of participating over p for various values of θ. A CMSE is a p such
that the function equals c

v (an illustrative value of c
v = 3

4 is depicted).

For the game with n = 4 and w = 2, the figure plots the normalised expected marginal
benefit of participation (LHS of equilibrium condition (11)) over p for various values of θ.
A CMSE is a p where this intersects with the normalised marginal cost of participation ( c

v
,

RHS of equilibrium condition (11)). For the marginal cost depicted, c
v

= 3
4
, and material

preferences, i.e. θ = 0, or very low guilt sensitivity, e.g. θ = 0.4, there exist no CMSE.
However, when players are more sensitive to guilt, e.g. θ = 0.8, there are two CMSE.

In the introduction we mentioned how coordination may be difficult in participation
games with material preferences, due to the large number of pure and mixed strategy
Nash equilibria. That guilt aversion can imply only two CMSE when there were zero with
material preferences may suggest that guilt averse players are better able to coordinate
and provide discrete public goods.
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4.3 Comparative statics

Next we consider comparative statics in the volunteer’s dilemma with guilt.

Proposition 4. In the volunteer’s dilemma, for all n ≥ 2, v > c > 0 and θ ≥ 0,

a. p∗ is strictly decreasing in c
v
,

b. p∗ is strictly decreasing in n, for all c ≤ c̄,

c. p∗ is strictly increasing in θ.

Proof: See appendix.

The cost-benefit ratio of the public good affects equilibrium participation similarly to
how it does with material preferences; it is decreasing in the cost and increasing in the
benefit (Proposition 4a). As discussed in Section 4.2, guilt aversion increases incentives
to participate so as to avoid disappointing co-players. This is reflected in equilibrium
participation increasing in the guilt sensitivity (Proposition 4c).

Recall that with material preferences, CMSE participation in the volunteer’s dilemma
was strictly decreasing in the number of players (see Observation 2). With guilt, the
same is true when the cost is low (Proposition 4b). However, when the cost is high, the
relationship is non-monotonic and CMSE participation can be increasing in the number
of players. The figure below illustrates.

Figure 3: The effect of the number of players on
participation in the volunteer’s dilemma

0 0.2 0.4 0.6 0.8 1

p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Volunteer's Dilemma with θ = 0.5

n = 3
n = 6
n = 9
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Note: For w = 1 and θ = 0.5, this figure plots the normalised marginal
benefit of participating over p for various values of n. A CMSE is a p such
that the function equals c

v .

For θ = 0.5, the figure plots the normalised expected marginal benefit of participation
(LHS of equilibrium condition (11)) in the volunteer’s dilemma over p for different values
of n. A CMSE is a value of p such that the plotted function equals the normalised
marginal cost of participation, c

v
. For the example in the figure, if c

v
< 0.8 then indeed,

CMSE participation is decreasing in the number of players. However, for higher values of
c
v
, CMSE participation can be increasing in the number of players.

To understand the intuition behind why guilt aversion gives rise to the non-monotonic
relationship, consider the following two opposing effects. On the one hand, when there
are more players, there is a higher probability that someone else will participate, therefore
a lower incentive to participate. On the other hand, when there are more players, there
are more people that will be disappointed if the good is not provided, thus increasing the
guilt that players experience and providing more incentive to participate. When the cost
is low, then the first effect always dominates as the material incentive to participate is
very high. When the cost is high then which of the two effects is larger depends on the
number of players. When there are few players, the first effect dominates. When there are
many players, the second effect dominates. Hence the non-monotonic effect of additional
players on equilibrium participation in a volunteer’s dilemma with a high cost.

Our next result considers comparative statics in the game with a threshold of w ≥ 2.
In order to make a precise statement, we restrict attention to parameters where there
exist two CMSE (see Proposition 3 for when this is the case).

Proposition 5. For all n ≥ 2, n > w ≥ 2, v > c > 0 and θ ≥ 0 where there exist two
CMSE, let p∗H(c, n, v, w, θ) and p∗L(c, n, v, w, θ) denote the CMSE participation probabilities
where p∗L < p∗H , then

a. p∗L is strictly increasing in c
v

and p∗H is strictly decreasing in c
v
,

b. p∗L and p∗H are strictly decreasing in n,

c. p∗L and p∗H are strictly increasing in w,

d. p∗L is strictly decreasing in θ and p∗H is strictly increasing in θ,

Proof: See appendix.

When there are two CMSE, factors that unambiguously increase the value of partici-
pation (i.e. a decrease in the material cost-benefit ratio or an increase in guilt sensitivity)
decrease the participation probability for the low participation equilibrium and increase
that of the high participation equilibrium. For an illustration of how the equilibria change,
see Figure 2.

13



As in the volunteer’s dilemma, an increase in the number of players has opposing
effects. On the one hand, i has more co-players whose disappointment he could feel guilt
for, thus increasing his incentive to participate. On the other hand, more co-players means
a higher probability of provision, thus a material incentive to decrease participation. The
higher probability of provision also implies a lower chance of i feeling guilty, further
decreasing his incentive to participate. The latter two effects dominate.

If the provision threshold increases, the probability of provision decreases. Players thus
have a material incentive to increase participation in order to compensate for this. Guilt
provides additional incentives to increase participation. As discussed after Proposition 1, i
only feels guilty if w−1 players participate and feels more guilty towards participants than
abstainers. An increase in w increases the number of participants towards whom i feels
guilty, thus providing larger guilt-alleviation incentives for i to increase his participation.

5 Estimating guilt sensitivity from experiments

Section 4 illustrated how players’ sensitivity to guilt, θ, can play a critical role in partic-
ipation games (e.g. determining whether a CMSE exists or not). It is useful to look at
data to reflect on the empirical relevance of our results.

We use our equilibrium characterisation and data from existing experimental studies
on participation games to impute the value of θ. If these values are drastically different
from existing estimates of θ, it calls into question the portability of such estimates for
different games and/or the empirical relevance of guilt aversion and CMSE in participation
games.

Table 1 presents the value of θ imputed for different studies. The table shows the
minimum value of θ required to generate the observed participation rate. Thus, the results
in the table give a lower bound on the guilt sensitivity parameter, under the assumption
that participants in the experiment are guilt averse with identical sensitivity to guilt.
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Table 1: Imputed guilt sensitivities

Study Treatment n w v c Subj. Observed p Nash θ

Dawes et al 1986 Standard 7 3 10 5 70 0.51 none 0.267
dilemma 7 5 10 5 70 0.64 none 0.131

Rapoport &
Eshed-Levy 1989

F&G 5 3 5 2 60 0.365 none 0.152

Erev & Rapoport
1990

Simultaneous 5 3 6 3 35 0.429
0.381

& 0.620
0.205

Diekmann 1993 A 2 1 100 50 33 0.61 0.5 0.462
H 5 1 100 50 25 0.28 0.159 0.294

Offerman et al. Low 7 7 3 180 60 63 0.198 none 0.254
1996 High 7 7 3 245 60 63 0.41 none -0.054

High 55 5 3 245 60 60 0.504
0.281

& 0.719
-0.153

Cadsby YB1 & GB1 10 5 11 10 20 0.136 none 34.5
& Maynes YB2 & GB2 10 5 20 10 20 0.243 none 1.53
1999 YB3 & GB3 10 5 30 10 20 0.184 none 3.148

YB4 & GB4 10 5 40 10 20 0.36
0.398

& 0.491
0.026

YB5 10 5 85 10 10 0.61
0.251

& 0.651
-0.033

Healy & Pate A, all cost 20 2 1 0.8 0.2 18 0.71 0.75 -0.194
2009 A, all cost 60 2 1 0.8 0.6 18 0.259 0.25 0.047

B, all cost 20 6 1 0.8 0.2 18 0.396 0.242 0.459
B, all cost 60 6 1 0.8 0.6 18 0.137 0.056 0.217

Feldhaus & Stauf
2016

Baseline 3 1 12 6 60 0.288 0.293 -0.014

Goeree et al. n = 2 2 1 0.8 0.2 34 0.52 0.75 -0.921
2017 n = 3 3 1 0.8 0.2 36 0.4 0.5 -0.239

n = 6 6 1 0.8 0.2 48 0.28 0.242 0.072
n = 9 9 1 0.8 0.2 36 0.19 0.159 0.054
n = 12 12 1 0.8 0.2 48 0.61 0.118 0.155

Notes: This table summarises the parameters and participation rates in experiments that run the
P&R game. Subj. refers to the number of subjects in the study. Observed p refers to the share of
players that chose to participate. Nash refers to the equilibrium probability of participation in the
CMSE (where it exists) with material preferences given the game parameters. A value of “none” in
this column implies no CMSE exists. θ calculates the minimum value of θ needed to generate the
observed participation rate assuming subjects play CMSE and given the game parameters.

3. This treatment also appears in Sonnemans et al. (1998) as treatment “Public good” and in
Offerman et al. (2001) as treatment “PGP”.
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The mean estimate of θ is 1.68 and the median is 0.142. The subject-weighted mean
estimate of θ (a weighted mean estimate of theta where the weight a particular study
receives is proportional to the number of subjects it has) is 0.925. Note that there is an
obvious outlier (Cadsby & Maynes 1999, YB1 & GB1). Excluding the outlier, the mean
is 0.255, the median is 0.131 and the subject-weighted mean is 0.165.

While one cannot over-infer from these back-of-the-envelope calculations for many
reasons, a low but positive estimate of guilt sensitivity is consistent with previous work
estimating the parameter. Using a four-player game, Bellemare et al. (2011) report θ
estimates in the range of 0.4 to 0.8. Bellemare et al. (2018) use mini-dictator games and
find θ in the range of 0.4 to 1.0 when estimates are “stake dependent” and a mean θ of 0.145
for their “stake independent” estimate.6 Although not conclusive, our analysis suggests
some portability of Battigalli & Dufwenberg’s guilt aversion model to participation games.

6 Conclusion

Participation is necessary for the provision of public goods the world over. Threshold
public goods come with an additional challenge, the coordination problem that results
from equilibrium multiplicity. We studied the effect of an important motivation that may
explain participation in such situations, guilt aversion. Despite the additional complexities
such preferences introduce, many of the results from the material preference game carry
over to that with guilt. Some new and intuitive results also emerge.

Guilt may help coordination as it facilitates the existence of completely mixed sym-
metric equilibria (CMSE), which are easier to coordinate on than many other types of
equilibria. Guilt increases (decreases) participation when players are coordinated on high
(low) participation equilibria. In a volunteer’s dilemma with guilt, group size has a non-
monotonic effect on participation in games with high participation costs. Re-analysing
existing experimental data, our equilibrium characterisation suggests that a low but pos-
itive guilt sensitivity parameter can explain observed participation rates.

To appreciate the relevance of our results it is important to note critical assumptions
that they are predicated on. One such assumption is the solution concept. Given our
focus on understanding coordination, our theoretical analysis was restricted to CMSE.
While we have fully characterised the effects of guilt for this class of equilibria it is not
obvious that the intuitions driving our results would extend to other classes of equilibria.
For instance, would guilt aversion imply existence of asymmetric mixed strategy equilibria
when none exist with material preferences? We leave it for future work to characterise
the effect of guilt on the full set of equilibria.

Since our motivation was to study the effects of guilt on participation, we did not
consider other motivations. However, by understanding the incentives behind our results

6Ederer & Stremitzer (2017) find θ estimates in the range of 0 to 20. However their study is less
comparable as they allow utilities to be concave in guilt and their model allows promises to be made.
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on guilt one can deduce the effect of other preferences in participation games. For instance,
the reason for non-existence of CMSE in the material game was insufficient incentives to
participate. Guilt aversion overcame this, but presumably so could a model with altruistic
agents, for example. It would be interesting to more fully compare and contrast the
differences between different preference models and test between them experimentally.

To the best of our knowledge, no other paper has empirically tried to identify the effect
of guilt in participation games. Our empirical estimates provide a useful first-pass check
of the portability of guilt aversion and its empirical relevance for participation games;
however, they are far from conclusive. For example, it may be that rather than playing
CMSE subjects are playing asymmetric equilibria and alternating between them such
that they generate the same overall participation rate as a CMSE. Future empirical work
should study individual subject choices rather than aggregate participation rates as we
do.

Our empirical exercise relied on analysing existing experimental data. This limited
our ability to test some of the novel hypotheses that emerged from our theory. For
instance, our model suggests that in a volunteer’s dilemma with guilt, group size can
have a non-monotonic effect on participation. However, since we are not aware of any
existing experimental work that has implemented a high cost volunteer’s dilemma where
group size is the varied by treatment, our conjecture remains untested.

There is much to be understood on how guilt affects participation in the provision of
public goods. We hope that the equilibrium characterisation presented here provides a
useful starting point for further study, both theoretical and empirical.

Appendix: Proofs

Proof of Proposition 1

If player j chooses to participate, his expected material payoff is (1−F (w−2;n−1, p))v−c.
When m < w, j’s material payoff is −c. Let S denote the set of strategy profiles such
that the public good is not provided: S ≡ {s ∈ S|m =

∑
si < w}. Let s ∈ S. Then

player j’s disappointment, if the public good provision threshold is not reached, is

Dj(s, 1, αj) = max{0, (1− F (w − 2;n− 1, p))v − c− (−c)}
= (1− F (w − 2;n− 1, p))v.

If player j chooses to abstain, his expected material payoff is (1−F (w− 1;n− 1, p))v.
When m < w, j’s material payoff is 0 thus his disappointment is

Dj(s, 0, αj) = max{0, (1− F (w − 1;n− 1, p))v − 0}
= (1− F (w − 1;n− 1, p))v.
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Player i only feels guilty if he chose to abstain and is pivotal for provision, that is,
when m = w−1. Thus i’s expected utility from participating is (1−F (w−2;n−1, p))v−c.
Note that the probability of m = w − 1 is ρ(w;n; p) and that if i abstains, then when
m = w− 1 there are n−w others abstaining and w− 1 others participating. This implies
i’s expected utility from abstain is

(1−F (w−1;n−1, p))v−ρθv [(w − 1)(1− F (w − 2;n− 1, p)) + (n− w)(1− F (w − 1;n− 1, p))] .

In a CMSE i’s expected utilities for participating and abstaining must be equal. Equating
the two and simplifying gives

ρ(1 + θ [(n− 1)(1− F (w − 2;n− 1, p))− (n− w)ρ]) =
c

v
. (13)

Note that when m = w−1 the difference in disappointment between those that participate
and those that abstain is ρ(w;n; p). Using this one can rewrite (13) as (11). �

Proof of Proposition 2

Substituting w = 1 into (11) and using q = 1− p gives,(
1 + θ(n− 1)(1− qn−1)

)
qn−1 =

c

v
. (14)

We first find an explicit expression for q∗(c, n, v, θ) then demonstrate its image lies in the
unit interval. Implicitly differentiating (14) with respect to c gives

∂q∗(c, n, v, θ)

∂c
=

1

v(n− 1)q∗(c, n, v, θ)n−2 [1 + θ(n− 1)(1− 2q∗(c, n, v, θ)n−1)]
. (15)

Solving partial differential equation (15) gives the general solution

q∗(c, n, v, θ)

=

(
2(K(n, v, θ) + c)

v (1 + θ (n− 1)) +
√
v(v + θ(n− 1)

[
v(n− 1)θ − 4(K(n, v, θ) + c− v

2
)
]
)

) 1
n−1

(16)

where K(n, v, c) is a function. Substituting (16) into (14) and solving for K(n, v, θ),
establishes that K(n, v, θ) = 0. The particular solution of (15) is thus

q∗(c, n, v, θ) =

(
2c

v (1 + θ (n− 1)) +
√
v(v + θ(n− 1)

[
v(n− 1)θ − 4(c− v

2
)
]
)

) 1
n−1

. (17)
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We now demonstrate that q∗ ∈ (0, 1). Suppose q∗ ≤ 0. This would imply that

v (n− 1)2 θ2 + (1− 4c+ 2v)(n− 1)θ + v + 1 ≤ 0. (18)

The LHS of (18) is a quadratic in θ. If the discriminant were negative then (18) would
be false. So suppose that it is non-negative; the larger root of the quadratic is then

4c− 2v − 1 +
√

16c2 − (16v + 8)c+ 1

2v(n− 1)
.

For this root to be non-negative it must be that 4v(1+v) ≤ 0, which is false. Thus q∗ > 0.
Now suppose q∗ > 1. This would imply that 4c(c − v) > 0, which is false since c < v by
assumption, thus q∗ < 1. �

Proof of Proposition 3

We first establish some properties of the LHS of equilibrium condition (11), then state
how these can be used to identify when equilibria exist.

Condition (11) can be written as(
n− 1

w − 1

)
pw−1(1− p)n−w(1 + θ[(n− 1)(1−

w−1∑
i=0

(
n− 1

i

)
pi(1− p)n−i)

+ (w − 1)

(
n− 1

w − 1

)
pw−1(1− p)n−w]) =

c

v
. (19)

Let g(p, θ) denote the LHS of (19). Clearly g(0, θ) = g(1, θ) = 0. We can show that

∂g(p, θ)

∂p
=

(
n− 1

w − 1

)
pw−2(1−p)n−w−1[α+θ[(n−w)α+(n−1)

w−1∑
i=0

(
n− 1

i

)
pi(1−p)n−i(np−i−α)

+ 2(w − 1)

(
n− 1

w − 1

)
pw−1(1− p)n−wα]],

where α = w−1−(n−1)p. Note that when p is arbitrarily close to zero, then ∂g(p, θ)/∂p >
0 and that when p is arbitrarily close to one, then ∂g(p, θ)/∂p < 0 (although (np−i−α) <
0, it is multiplied by an arbitrarily small number).

Next we argue that g(p, θ) is strictly quasiconcave in p. Rewrite equilibrium condition
(11) as

ρ(1 + θ [(n− w)(1− F (w − 1;n− 1, p∗)) + (w − 1)(1− F (w − 2;n− 1, p∗)]) =
c

v
.

Note that the LHS equals g(p, θ). In order to show that g(p, θ) is strictly quasiconcave
in p, reason as follows. Clearly ρ is a strictly quasiconcave function of p on [0, 1]. Note
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that H(p) = (1 + θ [(n− w)(1− F (w − 1;n− 1, p∗)) + (w − 1)(1− F (w − 2;n− 1, p∗)] is
a monotone increasing function of p, since 1−F is increasing in p. Note also that H(p) is
bounded above by 1 + θ(n− 1) and below by 1. This is sufficient for g(p, θ) to be strictly
quasi-concave in p for p < arg max ρ = w−1

n−1 . In order to guarantee g(p, θ) is strictly

quasiconcave in p for p > arg max ρ = w−1
n−1 , we demonstrate that the inflection point of

H(p) equals the argmax of ρ. The second derivative of H(p) at w−1
n−1 is

H ′′

(
w − 1

n− 1

)
=

(
− 1

w(w2 − 1)

)
(n−1)3−n

(
(w−1)(n−1)

∞∑
k=0

(2)k(w + 1− n)k(1− w)k

(w + 2)k(n− w)kk!

+ θ(n− w)n−2−w(w − 1)w
∞∑
k=0

(1)k(w − n)k(1− w)k

(w + 1)k(n− w)kk!

)[
(n− w)

(
n− 1

w − 1

)
− w

(
n− 1

w

)]

where (c)0 = 1 and (c)k =
∏k−1

i=0 (c+ i). Note that we can rewrite [·] as follows

(n− w)

(
n− 1

w − 1

)
− w

(
n− 1

w

)
=

(n− w)(n− 1)!

(w − 1)!(n− w)!
− w(n− 1)!

w!(n− w − 1)!

= (n− 1)!
( 1

(w − 1)!(n− w − 1)!
− 1

(w − 1)!(n− w − 1)!

)
= 0.

Thus H ′′(w−1
n−1 ) = 0 and the inflection point of H(p) equals the argmax of ρ. Hence g(p, θ)

is strictly quasiconcave in p and thus intersects c
v
, twice, once or zero times.

Finally, note that since [·] in (19) is strictly positive, ∂g(p, θ)/∂θ > 0. Thus for θ
sufficiently high, g(p, θ) will intersect c

v
twice.

(a) If c
v
≥ ρ(w;n, w−1

n−1 ), at least one CMSE exists when θ = 0 (Observation 3). Given
the properties of g established in this proof, there will exist two CMSE for all θ > 0.

(b) If c
v
< ρ(w;n, w−1

n−1 ), then no CMSE exists when θ = 0 (Observation 3). By the
properties of g established in this proof, there exist two CMSE if and only if θ is sufficiently
high. �

Proof of Proposition 4

Consider how q∗(c, n, v, θ) varies with each of its arguments in turn.

(a) First consider ∂q∗/∂c. Clearly ∂q∗/∂c 6= 0 given (15). Suppose then that ∂q∗/∂c <
0. This requires that [·] in the denominator of (15) is strictly negative. Substituting (17)
into [·], [·] < 0 implies

1

2
+

1

2θ(n− 1)
<

2c

v(1 + θ(n− 1)) + v(v + θ(n− 1)[v(n− 1)θ − 4(c− v/2)])
. (20)
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The LHS of (20) is positive, thus if the denominator of the RHS of (20) were negative,
(20) would not be true. The denominator of the RHS of (20) must thus be positive.
Simplifying (20) given this implies

v < c

[
4(n− 1)θ

(θ(n− 1) + 1)2

]
. (21)

Note that [4(n − 1)θ/(θ(n − 1) + 1)2] < 1 if (n − 1)2θ2 − 2(n − 1)θ + 1 > 0. Since the
discriminant of this quadratic in θ equals 0 and (n−1)2 > 0, (n−1)2θ2−2(n−1)θ+1 > 0
holds for all c, n, v and θ. However, this implies that (21) cannot hold as [·] < 1 and v > c
by assumption. Thus our supposition is false and it must be that ∂q∗/∂c > 0.

Also consider ∂q∗(c, n, v, θ)/∂v. Implicitly differentiating (14) with respect to v,

∂q∗(c, n, v, θ)

∂v
=

q∗(c, n, v, θ)n−1[1 + θ(n− 1)(1− q∗(c, n, v, θ))n−1]
−v(n− 1)q∗(c, n, v, θ)n−2[1 + θ(n− 1)(1− 2q∗(c, n, v, θ)n−1 − 1)]

. (22)

The numerator of (22) must be positive given (17). Since ∂q∗/∂v clearly cannot equal
zero, suppose ∂q∗/∂v > 0. This requires that [·] in the denominator of (22) be negative.
Substituting (17) into [·] implies (20). However we have already established that (20) is
false. Thus it must be that ∂q∗/∂v < 0.

(b) Second consider how q∗(c, n, v, θ) varies with n. Assume that n is continuous to
simplify the analysis. Implicitly differentiating (14) with respect to n gives

∂q∗(c, v, n, θ)

∂n

= −q
∗(c, v, n, θ)

n− 1

[
θ(1 + q∗(c, n, v, θ)n−1)

1 + θ(n− 1)(1− 2q∗(c, n, v, θ)n−1)
+ ln q∗(c, v, n, θ)

]
. (23)

The sign of (23) clearly depends on the sign of [·]. Sign each term in [·] as follows. The
numerator of the first term is strictly positive. Note that the denominator of the first
term is identical to [·] in (15), and we have demonstrated that this is strictly positive (see
discussion around (20)). Thus the first term in [·] of (23) is strictly positive. The second
term is strictly negative. Thus the sign of (23) depends on which term is larger. Note
that since limc→0 q

∗ = 0, it must be that limc→0[·] = −∞. Thus there exists c̄, such that
if c ≤ c̄, then ∂q∗/∂n > 0.

(c) Finally, consider ∂q∗(c, n, v, θ)/∂θ. Implicitly differentiating (14) with respect to
θ gives

∂q∗(c, n, v, θ)

∂θ
=

q∗(c, n, v, θ)(q∗(c, n, v, θ)n−1 − 1)

1 + θ(n− 1)(1− 2q∗(c, n, v, θ)n−1)
. (24)

Clearly this cannot equal zero. Suppose that ∂q∗/∂θ > 0. Since the numerator of (24) is
negative, it must then be that the denominator is also negative. Substituting (17) into the
denominator of (24), this requires that (20) is true. However, we have already established
that (20) is false. Therefore ∂q∗/∂θ < 0. �
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Proof of Proposition 5

Let g(n,w, θ, p) denote the LHS of equilibrium condition (11). Recall that in the proof
of proposition 3 we demonstrated that g(n,w, θ, 0) = g(n,w, θ, 1) = 0, that g is strictly
quasi-concave and that arg maxp g ∈ (0, 1).

(a) Equilibrium requires g(n,w, θ, p) = c
v
. Note that the LHS is independent of c

v
.

Given the properties of g stated at the start of this proof, an increase in c
v

increases p∗L
and decreases p∗H .

(b) Let p∗(n) denote an equilibrium probability as a function of n (with p∗L(n) and
p∗H(n) defined analogously). We will demonstrate that p∗L(n+ 1) < p∗L(n).

Given that we are interested in cases where there are two equilibria and given the
properties of g stated at the start of this proof, it must be that p∗L(n) < arg maxp g(n +
1, w, θ, p). For all p < arg maxp g(n+ 1, w, θ, p), consider g(n+ 1, w, θ, p)− g(n,w, θ, p).

g(n+ 1, w, θ, p)− g(n,w, θ, p)

= ρ(w;n+ 1, p)− ρ(w;n, p)

+ θn[ρ(w;n+ 1, p)(1− F (w − 1, n, p))− ρ(w;n, p)(1− F (w − 1, n− 1, p))]

+ θρ(w;n, p)(1− F (w − 1, n− 1, p)) + θ(w − 1)[ρ(w;n+ 1, p)2 − ρ(w;n, p)2] > 0.

To understand why the expression is strictly positive consider each line in turn. The
first line on the RHS is the first-difference of the pmf of a binomial distribution, which
is strictly increasing in n for the interval of p of interest; thus the first line is strictly
positive. Using the same property of the pmf, note that ρ(w;n + 1, p) > ρ(w;n, p) in
the second line on the RHS. Also, since the cdf of the binomial distribution is decreasing
in n, 1 − F (w − 1, n, p) > 1 − F (w − 1, n − 1, p). Taken together, this implies that the
second line of the RHS is strictly positive. The first term on the third line of the RHS is
the product of three strictly positive numbers, thus is strictly positive itself. Finally, the
aforementioned property of the pmf implies that the final term is strictly positive.

Equilibrium condition (11) requires that g(n + 1, w, θ, p∗L(n + 1)) = g(n,w, θ, p∗L(n)).
Given that g(n+ 1, w, θ, p)−g(n,w, θ, p) > 0, it must be that p∗L(n+ 1) < p∗L(n) since g is
strictly increasing in p for the range of interest. Applying the above reasoning recursively
establishes the result for arbitrary increases in n.

Analogous reasoning shows that p∗H(n+ 1)− p∗H(n) < 0.

(c) Let p∗(w) denote an equilibrium probability as a function of w (with p∗L(w) and
p∗H(w) defined analogously). We will demonstrate that p∗L(w + 1) > p∗L(w).

Given that we are interested in cases where there are two equilibria and given the prop-
erties of g stated at the start of this proof, it must be that p∗L(w) < arg maxp g(n,w, θ, p).
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For all p < arg maxp g(n,w, θ, p), consider g(n,w + 1, θ, p)− g(n,w, θ, p).

g(n,w + 1, θ, p)− g(n,w, θ, p)

= ρ(w + 1;n, p)− ρ(w;n, p)

+ θ(n− 1)[ρ(w + 1;n, p)(1− F (w, n− 1, p))− ρ(w;n, p)(1− F (w − 1, n− 1, p))]

+ θw[ρ(w + 1;n, p)2 − ρ(w;n, p)2] + θρ(w;n, p)2,

= f(w;n− 1, p)− f(w − 1;n− 1, p)

+ θ(n− 1)

[
f(w;n− 1, p)

(
n−1∑

k=w+1

f(k;n− 1, p)

)
− f(w − 1;n− 1, p)

(
n−1∑
k=w

f(k;n− 1, p)

)]
+ θw[f(w;n− 1, p)2 − f(w − 1;n− 1, p)2]

+ θf(w − 1;n− 1, p)2,

= f(w;n− 1, p)− f(w − 1;n− 1, p)

+ θ(n− 1)

[
f(w;n− 1, p)

(
n−1∑

k=w+1

f(k;n− 1, p)

)

− f(w − 1;n− 1, p)

(
f(w;n− 1, p) +

n−1∑
k=w+1

f(k;n− 1, p)

)]
+ θw[f(w;n− 1, p)2 − f(w − 1;n− 1, p)2]

+ θf(w − 1;n− 1, p)2,

= f(w;n− 1, p)− f(w − 1;n− 1, p)

+ θ(n− 1) (f(w;n− 1, p)− f(w − 1;n− 1, p))

(
n−1∑

k=w+1

f(k;n− 1, p)

)
+ θwf(w;n− 1, p)2 − θ(n− 1)f(w − 1;n− 1, p)f(w;n− 1, p)

+ θf(w − 1;n− 1, p)2 − θwf(w − 1;n− 1, p)2 < 0.

To understand why the expression is strictly negative consider each line in turn. The
fourth and third from last lines are strictly negative as the pmf of the binomial is strictly
decreasing in w for relevant p. Using the same property and that n− 1 ≥ w implies the
penultimate line is strictly negative. The final line is strictly negative as w > 1.

Equilibrium condition (11) requires that g(n,w + 1, θ, p∗L(w + 1)) = g(n,w, θ, p∗L(w)).
Given that g(n,w+1, θ, p)−g(n,w, θ, p) < 0, it must be that p∗L(w+1) > p∗L(w) since g is
strictly increasing in p for the range of interest. Applying the above reasoning recursively
establishes the result for arbitrary increases in w.

Analogous reasoning shows that p∗H(w + 1)− p∗H(w) > 0.

(d) Given that ∂g/∂θ > 0 and the properties of g stated at the start of this proof it
must be that p∗L is decreasing in θ and p∗H is increasing in θ. �
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