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1 Introduction

Anger may play a key role for shaping outcomes in economically important
ways. Consider three cases:

Case 1: In 2006 US gas prices went up and up. Many folks were
upset. Did this cause road rage, or people trading a truck for
a Hyundai? Did gas stations or truck dealers go easier on price
hikes, or offer rebates, anticipating potential adverse effects on
sales that might otherwise materialize?

Case 2: When local football teams that are favored to win in-
stead lose, the police get more reports of husbands assaulting
wives (Card & Dahl 2011). Do unexpected losses spur thus vented
frustration?

Case 3: Following Sovereign Debt Crises (2009-), some EU coun-
tries embarked on austerity programs. Was it because citizens lost
benefits that some cities experienced riots?

Traffi c safety, pricing, domestic violence, political landscapes: the ex-
amples above illustrate some situations where anger may have important
consequences. However, to carefully assess how emotions such as anger may
shape social and economic interactions, one needs a theory that predicts out-
comes based on the decision-making of anger-prone individuals and that also
accounts for the strategic consideration of such individuals’behavior by their
co-players. Our paper develops such a theory.
Insights from psychology about both the triggers of anger and its conse-

quences for behavior suggest how to incorporate anger into models of strate-
gic interaction. The behavioral consequences of emotions are referred to as
“action tendencies,” and the action tendency associated with anger is ag-
gression. One may imagine that angry players are willing to forego material
gains to punish others, or that a predisposition to behave aggressively when
angered may benefit a player by serving as a credible threat, and so on.
But while insights of this nature can be gleaned from psychologists’writings,
their analysis usually stops with the individual rather than going on to as-
sess overall economic/social implications. We take the basic insights about
anger that psychology has produced as input and inspiration for the theory
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we develop and apply.1

Economists have traditionally paid scant attention to emotions, including
anger, but interest is on the rise. Several recent studies inspire us. Most are
empirical, indicative of hostile action occurring in economic situations, based
on either observational2 or experimental3 data. A few of these studies present
theory,4 typically with the purpose of explaining specific data patterns. Our
approach is different. We do not start with data, but with notions from
psychology which we incorporate in general games. We are led to models
that differ substantially from the existing theory, though predictions may be
similar in their specific settings.
Psychologists suggest that anger is typically anchored in frustration, which

occurs when someone is unexpectedly denied something he or she cares
about.5 We assume (admittedly restrictively; cf. section 7) that people are
frustrated when they get less material rewards than they expected before-
hand. Moreover, they then become hostile towards whomever they blame.
There are several ways that blame may be assigned (cf. Alicke 2000) and
we present three distinct approaches, captured by distinct utility functions.
While players motivated by simple anger (SA) become generally hostile when
frustrated, those motivated by anger from blaming behavior (ABB) or by
anger from blaming intentions (ABI) go after others more discriminately,
asking who caused, or who intended to cause, their dismay.
What are the overall implications when people interact? To provide an-

swers, we develop a notion of polymorphic sequential equilibrium (PSE).
Players are assumed to correctly anticipate how others behave on average,
and the concept furthermore allows for different “types”of the same player
to have different plans in equilibrium, which yields meaningful updating of

1The relevant literature is huge. A good point of entry, and source of insights and
inspiration for us, is the recent International Handbook of Anger (Potegal, Spielberger &
Stemmler 2010), which offers a cross-disciplinary perspective over 32 chapters reflecting
“affective neuroscience, business administration, epidemiology, health science, linguistics,
political science, psychology, psychophysiology, and sociology” (p. 3, opening chapter).
We take the non-occurrence of “economics” in the list as an indication our approach is
original and needed!

2See Anderson & Simester (2010) and Rotemberg (2005, 2011) on pricing; Card & Dahl
on domestic violence.

3See Carpenter & Matthews (2012), Gurdal, Miller & Rustichini (2014), Gneezy &
Imas (2014).

4See Rotemberg (2005, 2008, 2011), Akerlof (2013), Passerelli & Tabellini (2013)
5Psychologists often refer to this as “goal-blockage;”cf. p.3 of the (op.cit.) Handbook.
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players’views of others’intentions as various subgames are reached. This is
crucial for a sensible treatment of how players consider intentionality as they
blame others. We apply this solution concept to the aforementioned utility
functions, explore properties, and compare predictions.
A player’s frustration depends on his beliefs about others’choices. The

blame a player attributes to another may depend on his beliefs about oth-
ers’choices or beliefs. For these reasons, all our models find their intellec-
tual home in the framework of psychological game theory; see Geanakoplos,
Pearce & Stacchetti (1989), Battigalli & Dufwenberg (2009).
We develop most of our analysis within a two-period setting described in

Section 2. Section 3 defines frustration. Section 4 develops our three key
notions of psychological utility. Section 5 introduces the equilibrium concept
and derives/highlights various results and insights. Section 6 generalizes the
analysis to multistage games. Section 7 concludes.

2 Setup

Players engage in a two-stage interaction. Stage, or period t ∈ {1, 2} is the
time interval between dates t − 1 and t. The set of active players and their
feasible actions depend on the period and on previous choices. Players start
with initial beliefs at date zero, and revise their beliefs conditioning on what
they learn. We first describe the rules of interaction, or game form, and then
we define initial and conditional beliefs.

2.1 Game form

We consider a finite two-stage game form describing the rules of interaction
and the consequences of players’actions. The set of players, possibly includ-
ing passive individuals, is I. Letting ∅ denote the empty history (the root of
the game), there is a finite set I(∅) of first movers; each i ∈ I(∅) picks an ac-
tion a1

i in the finite feasible set Ai(∅). More generally, I(h) and Ai(h) respec-
tively denote the set of active players and the set of feasible actions of player
i at a given history h.6 The finite set of active players in the second period,

6Formally, it is convenient to adopt the convention that inactive players have only one
feasible action, the pseudo-action “wait.”Thus |Aj(h)| = 1 (Aj(h) is a singleton) whenever
j /∈ I(h), and |A−i(h)| = 1 if I(h) = {i}. Whenever a set Y is a singleton, we identify the
Cartesian product X × Y with X, as the two sets are isomorphic.
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I(a1), depends on the first-period action profile a1 = (a1
i )i∈I(∅), which be-

comes public information at the beginning of the second period. If I(a1) = ∅,
the game ends; otherwise, each player i ∈ I(a1) chooses an action a2

i in the
finite feasible set Ai(a1); the resulting action profile is a2 = (a2

i )i∈I(a1). In
each period, active players move simultaneously. We let A(h) denote the set
feasible action profiles at h. Similarly, for each player i, A−i(h) denotes the
set of feasible action profiles of the co-players at h.7

The root ∅ and the feasible histories a1 ∈ A(∅) and (a1, a2) ∈ A(∅) ×
A(a1) are the nodes of the game tree. We let Z denote the set of terminal
histories/nodes of the game tree, and H denote the set of non-terminal, or
partial histories.8 For each h ∈ H, Z(h) denotes the set of terminal successors
of h.9 If the set of active players I(h) is a singleton for each h ∈ H, that is,
if players never move simultaneously, then the game has perfect information.
We assume that the material consequences of players’actions are deter-

mined by the profile of payoff functions (πi : Z → R)i∈I . This completes the
description of the game form, if there are no chance moves. If the game
contains chance moves, we augment the player set with a dummy player c
(with c /∈ I), who selects a feasible action at random. Thus, we consider an
augmented player set Ic = I ∪ {c}, and the sets of first movers and second
movers may include c as well: I(∅), I(a1) ⊆ Ic. If the chance player is ac-
tive at history h ∈ H, the chance move is described by a probability density

7According to our convention, A(h) = ×i∈IAi(h) and A−i(h) = ×j∈I\{i}Aj(h), which
are —respectively —isomorphic to ×i∈I(h)Ai(h) and ×j∈I(h)\{i}Aj(h).

8Formally, let
Z1 = {a1 : a1 ∈ A(∅), I(a1) = ∅}.

Then
H = {∅} ∪A(∅)\Z1,

Z = Z1 ∪ {(a1, a2) : a1 ∈ A(∅)\Z1, a2 ∈ A(a1)}.

9That is, Z(∅) = Z and Z(ā1) = {(a1, a2) : a1 = ā1, a2 ∈ A(ā1)} for each ā1 ∈ A(∅)\Z.
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function (pdf) σc(·|h) ∈ ∆(Ac(h)). Table 1 summarizes:

Notation Terminology
i ∈ I players
c, Ic = I ∪ {c} chance, set of players including chance
t ∈ {1, 2} stages, or periods
ati action of i in stage t
at (at−i) action profile (of others) in stage t
h ∈ H non-terminal, or partial histories
I(h) ⊆ Ic set of active players at h
Ai(h), A(h), A−i(h) set of actions and action profiles at h
σc(a

t
c|h) probabilities of chance moves

z ∈ Z terminal histories
Z(h) terminal successors of h
πi : Z → R monetary payoff function of i ∈ I
Table 1. Elements of the two-stage game form.

The following example illustrates our notation.

Figure A. Asymmetric punishment.

Example 1 (Asymmetric Punishment) Ann, Bob and Penny the punisher
play the following game form, where Ann and Bob move simultaneously in
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the first stage. Penny may move in the second stage; by choosing P she can
then decrease πb (while πa increases). See Figure A, where profiles of actions
and of monetary payoffs are listed according to players’alphabetical order.
Using our notation, we have:

H = {∅, (D,L)} ,
Z = {(U,L), (U,R), (D,L), ((D,L), N) , ((D,L), P )} ,

I(∅) = {a, b}, I ((D,L)) = {p},
Aa(∅) = {U,D}, Ab(∅) = {L,R}, Ap ((D,L)) = {N,P}. N

2.2 Beliefs

It is conceptually useful to distinguish the following three aspects of a player’s
beliefs: beliefs about co-players’actions, beliefs about co-players’beliefs, and
the player’s plan, which we represent as beliefs about own actions. Beliefs
are defined conditional on each history. Let us abstractly denote by ∆−i the
space of co-players’ beliefs. Player i’s beliefs can be compactly described
as conditional probability measures over paths and beliefs of others, that is,
over Z ×∆−i. Events, from i’s point of view, are subsets of Z ×∆−i. Events
about behavior have the form Y × ∆−i, with Y ⊆ Z; events about beliefs
have the form Z × E∆−i , with E∆−i ⊆ ∆−i.10

Personal histories To model how i determines the subjective value of each
feasible action at each history where he is active, we add to the commonly
observed histories h ∈ H also personal histories of the form (h, ai), with
i ∈ I(h), ai ∈ Ai(h). In a game with perfect information, (h, ai) ∈ H ∪ Z.
But if there are simultaneous moves at h, then (h, ai) is not a history in the
standard sense. As soon as i irreversibly chooses action ai, he observes (h, ai),
and determines the value of ai using his beliefs conditional on this event. We
denote by Hi the set of histories of i —the standard and personal ones —and
by Z(h, ai) the set of terminal successors of personal history (h, ai).11 The
standard precedence relation ≺ for histories in H∪Z is extended to Hi in the

10We assume that ∆−i is a compact metrizable space, which is justified by the con-
struction of hierarchical belief spaces given below. Events are Borel measurable subsets of
Z ×∆−i. We do not specify the terminal beliefs of i about the beliefs of others, because
they are not relevant for the models in this paper.
11That is,

Hi = H ∪ {(h, ai) : h ∈ H, i ∈ I(h), ai ∈ Ai(h)}
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obvious way: for all h ∈ H, i ∈ I(h), and ai ∈ Ai(h), it holds that h ≺ (h, ai)
and (h, ai) ≺ (h, (ai, a−i)) if i is not the only active player at h.

Conditional probability systems Player i’s system of beliefs βi is an
array of conditional beliefs indexed by histories in Hi: βi = (βi(·|[hi]))hi∈Hi,
where βi(·|[hi]) is a probability measure concentrated on event about behavior
[hi] = Z(hi)×∆−i for all hi ∈ Hi. We use obvious abbreviations like

βi(h
′
i|hi) = βi ([h

′
i]|[hi])

whenever this causes no confusion. More generally, we suppress parentheses
when this does not compromise understanding.
The first-order belief system of i gives the probabilities of terminal

histories and of action profiles conditional on each history:

αi(z|hi) = βi (z|hi) , αi(a|h) = αi((h, a)|h) (1)

for all z ∈ Z, hi ∈ Hi, h ∈ H and a ∈ A(h).
A belief system βi must satisfy some natural properties. First of all, the

rules of conditional probabilities must hold whenever possible: if hi ≺ h′i
then

βi(h
′
i|hi) > 0⇒ βi (E|h′i) =

βi (E ∩ [h′i]|hi)
βi(h

′
i|hi)

(2)

for all hi, h′i ∈ Hi and every event E ⊆ Z ×∆−i. Equations (1)-(2) imply

αi
(
a1, a2|∅

)
= αi

(
a2|a1

)
αi(a

1|∅).

Second, i realizes that his choice cannot influence simultaneous choices
and beliefs of co-players, so i’s beliefs satisfy a causal independence property:

βi ([h, (ai, a−i)] ∩ E−i|(h, ai)) = βi ([h, (a
′
i, a−i)] ∩ E−i|(h, a′i)) , (3)

for every h ∈ H, ai, a′i ∈ Ai(h), a−i ∈ A−i(h), and E−i = Z × E∆−i .
Properties (1)-(3) imply

αi(ai, a−i|h) = αi,i(ai|h)αi,−i(a−i|h),

and

Z(h, ai) =
⋃

a−i∈A−i(h)

Z (h, (ai, a−i)) .
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where αi,i(·|h) and αi,−i(·|h) are marginals of αi(·|h) on Ai(h) and A−i(h).
Note that the array of conditional probabilities αi,i = (αi,i(·|h))h∈H ∈

×h∈H∆ (Ai(h)) is —technically speaking —a behavioral strategy, and we inter-
pret it as the plan of i. The reason is that the result of i’s contingent planning
is precisely a system of conditional beliefs about what action he would take
at each history. If there is only one co-player, also αi,−i ∈ ×h∈H∆ (A−i(h))
formally corresponds to a behavioral strategy. With multiple co-players, αi,−i
corresponds instead to a “correlated behavioral strategy.”Whatever the case,
αi,−i gives the conditional beliefs of i about the behavior of others, and these
beliefs may not coincide with the plans of others. We emphasize that the
plan of a player is not an actual choice: actions on the path of play are the
only actual choices.
A belief system βi satisfying (2)-(3) is a conditional probability sys-

tem, or CPS. The set of such CPSs is denoted ∆Hi(Z × ∆−i), a subset of
[∆(Z ×∆−i)]

Hi . Whenever this causes no confusion, we write initial beliefs
omitting the empty history, as in βi (E) = βi (E|∅), or αi(a) = αi(a|∅).

Hierarchical beliefs Of course, (2)-(3) can be directly stated for the sys-
tem of first-order beliefs αi = (αi(·|h))h∈Hi , that is, the conditional beliefs
about paths. The set of first-order CPSs, ∆1

i = ∆Hi(Z), is a compact
metrizable space. The set of second-order CPSs, ∆2

i = ∆Hi(Z ×∆1
−i) where

∆1
−i = ×j∈I\{i}∆1

j , is compact and metrizable as well.
12 Higher-order belief

spaces can be defined by recursion, but we do not need them in our analysis.
Note that the first-order CPS αi ∈ ∆1

i = ∆Hi(Z) has to be derived from the
second-order CPS βi ∈ ∆2

i = ∆Hi(Z ×∆1
−i), otherwise i’s second-order hier-

archy (αi, βi) would be incoherent. Indeed, it can be checked that starting
from βi ∈ ∆2

i and letting

αi (Y |h) = βi
(
Y ×∆1

−i|h
)

for all h ∈ Hi and Y ⊆ Z, we obtain an array αi = (αi(·|h))h∈Hi of conditional
probabilities satisfying (1)-(3), that is, an element of ∆1

i . Whenever we write
in a formula beliefs of different orders for the same player, we assume that
first-order beliefs are derived from second-order beliefs.
12This holds for higher-order beliefs in general, as can be shown following a proof by

Battigalli & Siniscalchi (1999) with a minor modification to take independence into ac-
count.
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Conditional expectations Let ψi be any real-valued measurable function
of variables that player i does not know, e.g., the terminal history or the co-
players’first-order beliefs. Then i can compute the expected value of ψi
conditional on any common or personal history hi ∈ Hi by means of his CPS
βi. This expected value is denoted by E[ψi|hi; βi]. If ψi depends only on
actions, that is, on the path z, then E[ψi|hi; βi] is determined by the first-
order CPS αi derived from βi, and we can write E[ψi|hi;αi]. In particular,
the first-order CPS αi gives the conditional expected material payoffs:

E[πi|h;αi] =
∑
z∈Z(h)

αi(z|h)πi(z),

E[πi| (h, ai) ;αi] =
∑

z∈Z(h,ai)

αi(z|h, ai)πi(z)

for all h ∈ H, ai ∈ Ai(h). E[πi|h;αi] is what i expects to get conditional
on h given CPS αi, which also specifies i’s plan; while E[πi|(h, ai);αi] is the
expected payoffof taking action ai. If ai is precisely the action that i planned
to take at h, αi,i(ai|h) = 1, then E[πi|h;αi] = E[πi| (h, ai) ;αi]. For initial
beliefs, we omit h = ∅ from such expressions; in particular, the initially
expected payoff is E[πi;αi].

3 Frustration

We will present several models of how frustrated players attribute blame and
go after others, but keep our account of frustration constant. Here is the key
definition: i’s frustration in stage 2, given a1, is

Fi(a
1;αi) =

[
E[πi;αi]− max

a2i∈Ai(a1)
E[πi|(a1, a2

i );αi]

]+

,

where [x]+ = max{x, 0}. Player i’s frustration in stage 2 is given by the gap, if
positive, between his initially expected payoffand the currently best expected
payoff he believes he can obtain. Diminished expectation —E[πi|a1;αi] <
E[πi;αi] —is only a necessary condition for frustration. For i to be frustrated
it must also be the case that i cannot close the gap. This captures the
psychological intuition that, given i’s beliefs, i’s frustration in stage 2 does
not depend on his stage 2 action. Had we alternatively modeled frustration
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as equal to actual diminished expectations (that is, E[πi;αi]− E[πi|a1;αi]),
this would have had counterintuitive implications.

Fi(a
1;αi) expresses stage 2 frustration. One could define frustration at

the root, or at end nodes, but neither would matter for our purposes. At the
root nothing has happened, so frustration equals zero. Frustration is possible
at the end nodes, but can’t influence subsequent choices as the game is over.
One might allow the anticipated frustration at end nodes to influence earlier
decisions; however, to simplify the assumptions we make in the analysis be-
low, we rule out this possibility. Furthermore, players are influenced by the
frustrations of co-players only to the extent that they affect behavior.
To illustrate the definition of Fi(a

1;αi), return to the game form of Ex-
ample 1:

Example 2 Suppose that, in the game form of Figure A, Penny initially
expects to get $2, i.e., αp ((U,L)|∅) + αp ((D,R)|∅) = 1 and E[πp;αp] = 2.
Penny’s frustration after a1 = (D,L) is

Fp((D,L);αi) = [E[πp;αp]−max{πp((D,L), N), πp((D,L), P )}]+ = 2−1 = 1.

Penny’s frustration is independent of her plan, because she is initially certain
she will not move. Suppose instead that αp ((U,L)|∅) = αp ((D,L)|∅) = 1

2
.

Then

Fp((D,L);αi) =
1

2
× 2 +

1

2
αp (N |(D,L))× 1− 1 =

1

2
αp (N |(D,L)) .

Penny’s frustration is now highest when she initially plans not to punish Bob.
However, her frustration after a1 is independent of her actual choice: Penny’s
frustration equals 1

2
αp (N |(D,L)) independently of whether she ultimately

chooses N or P . N

4 Anger

A player’s preferences over actions at a given node —his action tendencies
—depend on expected material payoffs and frustration. A frustrated player
tends to hurt others, if this is not too costly (cf. Dollard et al. 1939, Averill
1983, Berkowitz 1989). We consider different versions of this frustration-
aggression hypothesis related to different levels of cognitive appraisal. In
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general, player i moving at history h chooses action ai in order to maximize
the expected value of a belief-dependent “decision utility”of the form

ui (h, ai; βi) = E [πi| (h, ai) ;αi]− θi
∑
j 6=i

Bij (h; βi)E [πj| (h, ai) ;αi] , (4)

where Bij (h; βi) ≥ 0 measures how much of i’s frustration is blamed on co-
player j (and hence the tendency to hurt j), αi is the first-order CPS derived
from second-order belief βi, and θi is a sensitivity parameter. We assume
that Bij (h; βi) is positive only if frustration is positive:

Bij(a
1; βi) ≤ Fi(a

1;αi). (5)

Therefore, the decision utility of a first-mover coincides with expected mate-
rial payoff, because there cannot be any frustration in the first stage:

ui (∅, ai; βi) = E[πi|ai;αi].

When i is the only active player at h = a1, he determines the terminal history
with his choice ai = a2, and decision utility has the form

ui
(
a1, ai; βi

)
= πi

(
a1, ai

)
− θi

∑
j 6=i

Bij

(
a1; βi

)
πj
(
a1, ai

)
.

We now proceed to consider three specific functional forms that capture
different notions of blame.

4.1 Simple Anger (SA)

Our most rudimentary hypothesis, simple anger (SA), is that i’s tendency
to hurt others is proportional to i’s frustration, un-modulated by cognitive
appraisal of blame, so Bij (a1; βi) = Fi(a

1;αi):

uSAi (a1, ai;αi) = E
[
πi|
(
a1, ai

)
;αi
]
−θi

∑
j 6=i

Fi(a
1;αi)E

[
πj|
(
a1, ai

)
;αi
]
. (6)
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Figure B. Ultimatum Minigame.

Example 3 (Ultimatum Minigame) Ann and Bob play a simple bargaining
game: Ann can make a fair offer, which is automatically accepted, or a greedy
offer which Bob can either accept or reject. See Figure B. Bob’s frustration
following the greedy offer is

Fb(g;αb) = [(2 (1− αb(g)) + αb(g)αb(y))− 1]+ .

Therefore

uSAb (g, n;αi)− uSAb (g, y;αi) = 3θb [(2 (1− αb(g)) + αb(g)αb(y))− 1]+ − 1.

For Bob to be frustrated he must not expect the greedy offer with certainty.
If he is frustrated, the less he expects the greedy offer, and —interestingly —
the less he plans to reject it, the more prone he is to reject once the greedy
offer materializes. The more resigned Bob is to getting a low payoff, the less
frustrated and prone to aggression he will be when receiving the low-ball
offer. N

4.2 Anger from blaming behavior (ABB)

Action tendencies may depend on a player’s cognitive appraisal of how to
blame others. When a frustrated player i blames co-players for their behavior,
he looks only at the actions chosen in stage 1, without considering intentions,
that is, without considering others’plans and beliefs about others. Player i’s
tendency to hurt j is determined by a continuous blame function Bij(a

1;αi)
that depends only on first-order belief αi such that

Bij(a
1;αi) =

{
0, if j /∈ I(∅),
Fi(a

1;αi), if {j} = I(∅).
(7)

13



Equation (7) says that, if j is not active in the first stage, he cannot be
blamed for i’s frustration, and if instead j is the only active player, he is fully
blamed.13 We consider below specific functional forms for Bij(a

1;αi) that
satisfy (5)-(7). With this, the decision utility with anger from blaming
behavior (ABB) is

uABBi (a1, ai;αi) = E
[
πi|
(
a1, ai

)
;αi
]
− θi

∑
j 6=i

Bij(a
1;αi)E

[
πj|
(
a1, ai

)
;αi
]
.

The following example illustrates the difference between SA and ABB:

Figure C. Hammering one’s thumb.

Example 4 (Inspired by Frijda, 1993) Andy the handyman (player a in
Figure C) uses a hammer. His apprentice, Bob, has no payoff-relevant action.
In a bad day (determined by chance) Andy hammers his thumb and can then
either take it out on Bob or not. If he does, he further disrupts production.
See Figure C. Assuming αa(B) = ε < 1/2, the extent of Andy’s frustration
in a bad day is

Fa(B;αa) = 2(1− ε) + εαa(N |B)− 1 > 0.

With SA and θa suffi ciently high, Andy takes it out on Bob. But, since Bob
is passive, with ABB Andy chooses N regardless of θa. N

SA and ABB yield the same behavior in the Ultimatum Minigame and
similar game forms. Say that a game form is a leader-followers game if
there is only one active player in the first stage, who does not move in stage

13Recall that I(h) is the set of active players at h, possibly including chance (see Table
1). For example, I(∅) = {c} in the game form of Figure C.
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two: I(∅) = {j} and I(∅) ∩ I(a1) = ∅ for some j ∈ I and every a1. Let us
write ui,θi to make the dependence of ui on parameter θi explicit; then (7)
implies:

Remark 1 In leader-followers games, SA and ABB coincide, that is, uSAi,θi =
uABBi,θi

for all θi.

Next, we contrast two specific functional forms for ABB.

Could-have-been blame When frustrated after action profile a1, player
i considers, for each j, what he would have obtained at most, in expectation,
had j chosen differently:

max
a′j∈Aj(∅)

E
[
πi|(a1

−j, a
′
j);αi

]
.

If this could-have-been payoff is more than what i currently expects (that is,
E[πi|a1;αi]), then i blames j, up to i’s frustration (so (5) holds):

Bij(a
1;αi) = min

{[
max

a′j∈Aj(∅)
E
[
πi|(a1

−j, a
′
j);αi

]
− E[πi|a1;αi]

]+

,Fi(a
1;αi)

}
.

(8)
Blame function (8) satisfies (7) (cf. Remark 4 below).

Example 5 Consider Penny at a1 = (D,L) in Figure A. For each j ∈ {a, b},
Penny’s could-have-been payoff is 2 ≥ E[πp;αp], her expected payoff is

E[πp|(D,L);αp] ≤ 1, and her frustration is
[
E[πp;αp]− 1

]+

. Therefore

Bpa((D,L);αp) = Bpb((D,L);αp) =

min

{
[2− E[πp|(D,L);αp]]

+,
[
E[πp;αp]− 1

]+
}

=
[
E[πp;αp]− 1

]+

,

that is, both Ann and Bob are fully blamed by Penny for her frustration at
(D,L). N
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Blaming unexpected deviations When frustrated after a1, i assesses,
for each j, how much he would have obtained had j behaved as expected:∑

a′j∈Aj(∅)

αij(a
′
j)E
[
πi|(a1

−j, a
′
j);αi

]
,

where αij(a′j) is the marginal probability of action a
′
j according to i’s belief

αi. With this, the blame formula is

Bij(a
1;αi) =

min


 ∑
a′j∈Aj(∅)

αij(a
′
j)E
[
πi|(a1

−j, a
′
j);αi

]
− E[πi|a1;αi]

+

,Fi(a
1;αi)

 . (9)
If j is not active in the first stage, we get

Bij(a
1;αi) = min

{[
E[πi|a1;αi]− E[πi|a1;αi]

]+
,Fi(a

1;αi)
}

= 0;

that is, j cannot have deviated and cannot be blamed. If, instead, j is the
only active player in the first stage, then∑

a′j∈Aj(∅)

αij(a
′
j)E
[
πi|(a1

−j, a
′
j);αi

]
=

∑
a′∈A(∅)

αi(a
′)E [πi|a′;αi] = E [πi;αi] ,

and (9) yields

Bij(a
1;αi) = min

{[
E[πi;αi]− E[πi|a1;αi]

]+
,Fi(a

1;αi)
}

= Fi(a
1;αi).

Therefore, like blame function (8), also (9) satisfies (7).
If a1

j is what i expected j to do in the first stage (αij(a
1
j) = 1) then

Bij(a
1;αi) = min

{[
E[πi|a1;αi]− E[πi|a1;αi]

]+
,Fi(a

1;αi)
}

= 0.

In other words, j did not deviate from what i expected and j is not blamed
by i. This is different from “could-have-been”blame (8).

Example 6 Suppose that, in Figure A, Penny is initially certain of (U,L),
so αp(U,L) = 1 and E[πp;αp] = 2. Upon observing (D,L) her frustration is
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Fp((D,L);αp) = [E[πp;αp] − 1]+ = 1. Using Equation (9), at a1 = (D,L),
Penny fully blames Ann, who deviated from U to D. Using that∑

a′a∈Aa(∅)

αpa(a
′
a)E

[
πp|(a1

−a, a
′
a);αp

]
= πp(U,L) = 2

we get that Penny’s blame of Ann equals Penny’s frustration

Bpa((D,L);αp) = min
{[

2− E[πp|a1;αp]
]+
, 1
}

= 1.

On the other hand, Penny does not blame Bob, who played L as expected.
To verify this, note that when frustrated after (D,L) Penny assesses how
much she would have obtained had Bob behaved as expected:∑

a′b∈Ab(∅)

αpb(a
′
b)E
[
πp|(a1

−b, a
′
b);αp

]
= E[πp|(D,L);αp]

and

Bpb((D,L);αp) = min
{

[E[πp|(D,L);αp]− E[πp|(D,L);αp]]
+ , 1

}
= 0,

in contrast to could-have-been blame (5) under which, as we saw, Penny fully
blames Bob (Example 5). N

Blaming unexpected deviations and could-have-been blame both credit
the full frustration on the first-mover of a leader-followers game, because
they both satisfy (7)(see Remark 1).

4.3 Anger from blaming intentions (ABI)

A player i prone to anger from blaming intentions (ABI) asks himself,
for each co-player j, whether j intended to give him a low expected payoff.
Since such intention depends on j’s first-order beliefs αj (which include j’s
plan, αj,j), how much i blames j depends on i’s second-order beliefs βi, and
the decision utility function has the form

uABIi (h, ai; βi) = E [πi| (h, ai) ;αi]− θi
∑
j 6=i

Bij (h; βi)E [πj| (h, ai) ;αi] ,

where αi is derived from βi.
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The maximum payoff that j, initially, can expect to give to i is

max
a1j∈Aj(∅)

∑
a1−j∈A−j(∅)

αj,−j(a
1
−j)E

[
πi|
(
a1
j , a

1
−j
)

;αj
]
.

Note that

max
a1j∈Aj(∅)

∑
a1−j∈A−j(∅)

αj,−j(a
1
−j)E

[
πi|
(
a1
j , a

1
−j
)

;αj
]

≥
∑

a1∈A(∅)

αj(a
1)E

[
πi|a1;αj

]
= E [πi|αj] ,

where the inequality holds by definition, and the equality is implied by the
chain rule (2). Note also that αj(·|a1) is kept fixed under the maximization;
we focus on what j considers he could achieve at the root, taking the view
that he cannot control a2

j but predicts how he will choose in stage 2. We
assume that i’s blame on j at a1 equals i’s expectation, given second-order
belief βi and conditional on a

1, of the difference between the maximum payoff
that j can expect to give to i and what j plans/expects to give to i, capped
by i’s frustration:

Bij(a
1; βi) = (10)

min

E
max

a1j

∑
a1−j

αj,−j(a
1
−j)E

[
πi|
(
a1
j , a

1
−j
)

;αj
]
− E[πi;αj]

∣∣∣∣∣∣ a1; βi

 ,Fi(a1;αi)

 ,
which is non-negative as per the previously highlighted inequality. Now, i’s
decision utility after the first-stage history h = a1 is

uABIi (h, ai; βi) = E [πi| (h, ai) ;αi]− θi
∑
j 6=i

Bij(a
1; βi)E

[
πj|
(
a1, ai

)
;αi
]
,

where, in both equations, αi is derived from βi.

Example 7 Consider the Ultimatum Minigame form of Figure B. The max-
imum payoff Ann can give to Bob is 2, independently of αa. Suppose that
Bob, upon observing the greedy offer g, is certain that αa(g) = p, that
is, βb(αa(g) = p|g) = 1, with p < 1. Also, Bob is certain after g that
Ann expected him to accept the greedy offer with probability q, that is,
βb(αa(y|g) = q|g) = 1. Finally, suppose Bob initially expected to get the fair
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offer (αb(f) = 1), so that his frustration after g is Fb(a1;αb) = 2 − 1 = 1.
Then the extent of Bob’s blame on Ann’s intentions is

Bba(g; βb) = min {2− [2(1− p) + qp], 1} = min {p(2− q), 1} .

If p is low enough, or q high enough, Bob does not blame all his frustration
on Ann. He gives her some credit for the initial intention to make the fair
offer with probability 1− p > 0, and the degree of credit depends on q. N

5 Equilibrium analysis

In this paper we depart from traditional game-theoretic analysis, model-
ing the role of anger by means of belief-dependent decision-utility functions.
With this, our equilibrium analysis is otherwise quite traditional in the follow-
ing sense: We interpret an equilibrium as a profile of strategies and beliefs
representing a “commonly understood” way to play the game by rational
(utility maximizing) agents. This is a choice of focus rather than a full
endorsement of traditional equilibrium analysis. We want to analyze how
equilibrium outcomes change when we take frustration and anger into ac-
count.14

We consider two notions of equilibrium. The first one is the sequential
equilibrium (SE) concept of Battigalli & Dufwenberg (2009),15 extending
Kreps & Wilson’s (1982) classic solution to psychological games. In a com-
plete information framework like the one we adopt here for simplicity,16 SE
requires that each player i is certain and never changes his mind about the

14As stressed by Battigalli & Dufwenberg (2009), with belief-dependent preferences
the need to explore and use alternative solution concepts like rationalizability and self-
confirming equilibrium is even stronger than with standard preferences. Battigalli &
Dufwenberg (2009, Section 5) analyze rationalizability and psychological forward-induction
reasoning. Battigalli, Charness & Dufwenberg (2013) apply a notion of incomplete-
information rationalizability to show that observed patterns of deceptions can be explained
by guilt aversion. Self-confirming equilibrium, instead, has not yet been used in the analy-
sis of psychological games.
15We consider the version for preferences with own-plan dependence and “local” psy-

chological utility functions (see Battigalli & Dufwenberg 2009, Section 6).
16Recall that complete information means that the rules of the game and players’

(psychological) preferences are common knowledge. For an illustration of incomplete-
information equilibrium analysis of psychological games see, e,g., Attanasi, Battigalli &
Manzoni (2015).
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true beliefs and plans, hence intentions, of his co-players. We find this fea-
ture questionable; therefore, we also explore a generalization —“polymorphic
sequential equilibrium”(PSE) —that allows for meaningful updating about
others’intentions.
Battigalli & Dufwenberg’s (2009) SE concept gives equilibrium conditions

for infinite hierarchies of conditional probability systems. In our particular
application, utility functions only depend on first- or second-order beliefs, so
we define SEs for assessments comprising beliefs up to only the second order.
Since, technically, first-order beliefs are features of second-order beliefs (see
2.2), we provide definitions that depend only on second-order beliefs, which
gives SEs for games where psychological utility functions depend only of first-
order beliefs as a special case. Finally, although we so far restrict our analysis
of frustration and anger to two-stage game forms, our abstract definitions of
equilibrium for games with belief-dependent preferences (and the associated
existence theorem) apply to all multistage game forms.

5.1 Sequential equilibrium (SE)

Fix a game form and decision-utility functions ui(h, ·; ·) : Ai(h) × ∆2
i → R

(i ∈ I, h ∈ H). This gives a psychological game in the sense of Battigalli
& Dufwenberg (2009).17 An assessment is a profile of behavioral strategies
and beliefs (σi, βi)i∈I ∈ ×i∈IΣi ×∆2

i such that Σi = ×h∈H∆ (Ai(h)) and for
each i ∈ I, σi is the plan αi,i entailed by CPS βi:

σi(ai|h) = αi,i(ai|h) = βi
(
Z(h, ai)×∆1

−i|h
)

(11)

for all i ∈ I, h ∈ H, ai ∈ Ai(h). Eq. (11) implies that the behavioral strate-
gies contained in an assessment are implicitly determined by players’beliefs
about paths; therefore, they could be dispensed with. We follow Battigalli
& Dufwenberg (2009) and make behavioral strategies explicit in assessments
only to facilitate understanding and comparisons with the equilibrium refine-
ments literature.

Definition 1 An assessment (σi, βi)i∈I is consistent if, for all i ∈ I, h ∈
H, and a = (aj)j∈I(h) ∈ A(h),

17See the extensions discussed in Section 6. Note that we are not modeling beliefs
about co-players’sensitivity to anger (nor beliefs about such beliefs, etc.), because we are
assuming common knowledge of psychological preferences.
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(a) αi(a|h) = ×j∈I(h)σj(aj|h),
(b) marg∆1

−i
βi(·|h) = δα−i,

where αj is derived from βj for each j ∈ I, and δα−i is the Dirac probability
measure that assigns probability one to the singleton {α−i} ⊆ ∆1

−i.

Condition (a) requires that players’ beliefs about actions satisfy inde-
pendence across co-players (on top of own-action independence), and each
i expects each j to behave as specified by j’s plan σj = αj,j. This implies
that all players have the same first-order beliefs. Condition (b) requires that
players’ beliefs about co-players’first-order beliefs (hence their plans) are
correct and never change, on or off the path. This implies that all players,
essentially, have the same second-order beliefs (considering that they are in-
trospective and therefore know their own first-order beliefs). For later use,
we record two facts about consistency:

Lemma 1 For each behavioral strategies profile σ = (σi)i∈I there is a unique
profile of second-order beliefs βσ = (βσi )i∈I such that (σ, βσ) is a consistent
assessment. The map σ 7→ βσ is continuous.

Proof Write Pσ(h′|h) for the probability of reaching h′ from h, e.g.,

Pσ(a1, a2|∅) =

 ∏
j∈I(∅)

σj(a
1
j |∅)

 ∏
j∈I(a1)

σj(a
2
j |a1)

 .

With this, first define ασi as α
σ
i (z|h) = Pσ(z|h) for all i ∈ I, h ∈ H, and z ∈ Z.

Next define βσ as βσi (·|h) = ασi (·|h) × δασ−i for all i ∈ I, h ∈ H. It can be
checked that (1) βσ ∈ ∆2

i for each i ∈ I, (2) (σ, βσ) is a consistent assessment,
and (3) if β 6= βσ, then either (a) or (b) of Definition 1 is violated. It is also
apparent from the construction that the map σ 7→ βσ is continuous, because
σ 7→ ασ is obviously continuous, and the Dirac-measure map α−i 7→ δα−i is
continuous. �

Lemma 2 The set of consistent assessments is compact.

Proof The set of consistent assessments is contained in the compact
metrizable space ×i∈I(Σi × ∆2

i ). Therefore, it is enough to show that it is
closed. Let (σn, βn)n∈N be a converging sequence of consistent assessments
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with limit (σ∞, β∞). For each i ∈ I, let αni be the first-order belief derived
from βni (n ∈ N ∪ {∞}), that is,

αni (Y |h) = βni (Y ×∆1
−i|h)

for all h ∈ H and Y ⊆ Z(h). By consistency, for all n ∈ N, i ∈ I, h ∈ H,
a ∈ A(h), and E−i ⊆ ∆−i it holds that

• (a.n) αni (a|h) = βni
(
Z(h, a)×∆1

−i|h
)

=
∏

j∈I(h) σ
n
j (aj|h),

• (b.n) marg∆1
−i
βni (·|h) = δαn−i , where each α

n
j is determined by σ

n as per
(a.n).

Then, of course, α∞i (a|h) = β∞i
(
Z(h, a)×∆1

−i|h
)

=
∏

j∈I(h) σ
∞
j (aj|h) for

all i ∈ I, h ∈ H, a ∈ A(h). Furthermore, marg∆1
−i
β∞i (·|h) = δα∞−i for all i ∈ I

and h ∈ H, because αn−i → α∞−i and the marginalization and Dirac maps
βi 7→marg∆1

−i
βi and α−i 7→ δα−i are continuous. �

Definition 2 An assessment (σi, βi)i∈I is a sequential equilibrium (SE)
if it is consistent and satisfies the following sequential rationality condition:
for all h ∈ H and i ∈ I(h)

Suppσi(·|h) ⊆ arg max
ai∈Ai(h)

ui(h, ai; βi).

It can be checked that this definition of SE is equivalent to the traditional
one when players have standard preferences, that is, when there is a profile
of utility functions (vi : Z → R)i∈I such that ui(h, ai; βi) = E[vi|(h, ai);αi].18
A special case of this is the material-payoff game, where vi = πi for each
i ∈ I.

Theorem 3 If ui(h, ai; ·) is continuous for all i ∈ I, h ∈ H and ai ∈ Ai(h),
then there is at least one SE.

Battigalli & Dufwenberg (2009) prove a version of this existence result
where first-order beliefs are modeled as CPSs over pure strategies profiles

18According to the standard definition of SE, sequential rationality is given by global
maximization over (continuation) strategies at each h ∈ H. By the One-Shot-Deviation
principle, this is equivalent to “local”maximization over actions at each h ∈ H.
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rather than paths. But their “trembling-hand”technique can be used here
with straightforward adaptations. We omit the details.19

What we said so far about equilibrium does not assume specific functional
forms. From now on, we focus on uSAi , u

ABB
i , and uABIi . Since frustration

and blame are continuous in beliefs, decision-utility is also continuous, and
we obtain existence in all cases of interest:

Corollary 1 Every game with SA, ABB, or ABI has at least one SE.

Remark 2 Let (σi, βi)i∈I be a SE assessment of a game with SA, ABB, or
ABI; if a history h ∈ H has probability one under profile (σi)i∈I , then

Fi(h
′;αi) = 0, Suppσi(·|h′) ⊆ arg max

a′i∈Ai(h′)
E[πi|h′;αi]

for all h′ � h and i ∈ I(h′), where αi is derived from βi. Therefore, a SE
strategy profile of a game with SA, ABB, or ABI with randomization (if any)
only in the last stage is also a Nash equilibrium of the agent form of the
corresponding material-payoff game.

Proof Fix i ∈ I arbitrarily. First-order belief αi is derived from βi
and, by consistency, gives the behavioral strategies profile σ. Therefore,
by assumption each h′ � h has probability one under αi, which implies that
E[πi|h′;αi] = E[πi;αi], hence Fi(h

′;αi) = 0. Since blame is capped by frustra-
tion, ui(h′, a′i; βi) = E[πi|h′;αi]. Therefore, sequential rationality of the equi-
librium assessment implies that Suppσi(·|h′) ⊆ arg maxa′i∈Ai(h′) E[πi|h′;αi] if
i ∈ I(h′). If there is randomization (if any) only in the last state, then players
maximize (locally) their expected material payoff on the equilibrium path.
Hence, the second claim follows by inspection of the definitions of agent form
(of the material-payoff game) and Nash equilibrium. �

To illustrate, in the Ultimatum minigame (f, n) can be a SE under ABB,
and is also a Nash equilibrium of the agent form with material-payoffutilities.
Essentially, with (counterfactual) anger in the picture, n becomes a credible
threat. Corollary 1 and Remark 2 also hold for the multistage extension of
Section 6.
We say that two assessments are realization-equivalent if the corre-

sponding strategy profiles yield the same probability distribution over termi-
nal histories.
19A similar technique is used in the first part of the proof of Proposition 1.
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Proposition 1 In every perfect-information (two-stage) game form without
chance moves and a unique SE of the material-payoff game, this equilibrium
is realization-equivalent to a SE of the psychological game with ABI, ABB,
or - with only two players, SA.

Proof Let (σ̄, β̄) =
(
σ̄i, β̄i

)
i∈I be the SE of the material payoff game,

which is in pure strategies by the perfect information assumption. Fix
decision-utility functions ui(h, ai; ·) of the ABI, or ABB kind, and a sequence
of real numbers (εn)n∈N, with εn → 0 and 0 < εn <

1
maxi∈I,h∈H |Ai(h)| for all

n ∈ N. Consider the constrained psychological game with such decision-
utility functions where players can choose mixed actions in the following
sets:

Σn
i (h) = {σi(·|h) ∈ ∆(Ai(h)) : ‖σi(·|h)− σ̄i(·|h)‖ ≤ εn}

if h is on the σ̄-path, and

Σn
i (h) = {σi(·|h) ∈ ∆(Ai(h)) : ∀ai ∈ Ai(h), σi(ai|h) ≥ εn}

if h is off the σ̄-path. By construction, these sets are non-empty, convex,
and compact. Since the decision-utility functions are continuous in beliefs,
and the consistent assessment map σ 7−→ βσ is continuous (Lemma 1), the
correspondence

σ 7−→ ×h∈H ×i∈I(h) arg max
σ′i(·|h)∈Σni (h)

∑
ai∈Ai(h)

σ′i(ai|h)ui(h, ai; β
σ
i )

is upper-hemicontinuous, non-empty, convex, and compact valued; therefore
(by Kakutani’s theorem), it has a fixed point σn. By Lemma 2, the sequence
of consistent assessments

(
σn, βσ

n)∞
n=1

has a limit point (σ∗, β∗), which is con-
sistent too. By construction, σ̄(·|h) = σ∗(·|h) for h on the σ̄-path, therefore
(σ̄, β̄) and (σ∗, β∗) are realization-equivalent. We let ᾱi (respectively, α∗i )
denote the first-order beliefs of i implied by (σ̄, β̄) (respectively, by (σ∗, β∗)).
We claim that the consistent assessment (σ∗, β∗) is a SE of the psycho-

logical game with decision-utility functions ui(h, ai; ·). We must show that
(σ∗, β∗) satisfies sequential rationality. If h is off the σ̄-path, sequential ra-
tionality is satisfied by construction. Since σ̄ is deterministic and there are
no chance moves, if h is on the σ̄-path (that is on the σ∗-path) it must have
unconditional probability one according to each player’s beliefs and there
cannot be any frustration; hence, ui(h, ai; β

∗
i ) = E[πi|h, ai;α∗i ] (i ∈ I) where
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α∗i is determined by σ
∗. If, furthermore, it is the second stage (h = ā1, with

σ̄(ā1|∅) = 1), then —by construction —E[πi|h, ai;α∗i ] = E[πi|h, ai; ᾱi], where
ᾱi is determined by σ̄. Since σ̄ is a SE of the material-payoffgame, sequential
rationality is satisfied at h. Finally, we claim that (σ∗, β∗) satisfies sequen-
tial rationality also at the root h = ∅. Let ι(h) denote the active player
at h. Since ι(∅) cannot be frustrated at ∅, we must show that action ā1

with σ̄(ā1|∅) = 1 maximizes his expected material payoff given belief αι(∅).
According to ABB and ABI, player ι(a1) can only blame the first mover ι(∅)
and possibly hurt him, if he is frustrated. Therefore, in assessment (σ∗, β∗) at
node a1, either ι(a1) plans to choose his (unique) payoff maximizing action,
or he blames ι(∅) strongly enough to give up some material payoff in order to
bring down the payoff of ι(∅). Hence, E[πι(∅)|a1;α∗ι(a1)] ≤ E[πι(∅)|a1; ᾱι(a1)]

(anger). By consistency of (σ∗, β∗) and (σ̄, β̄), α∗ι(a1) = α∗ι(∅) and ᾱι(a1) = ᾱι(∅)

(cons.). Since (σ∗, β∗) is realization-equivalent to (σ̄, β̄) (r.e.), which is the
material-payoff equilibrium (m.eq.), for each a1 ∈ A(∅),

E[πι(∅)|ā1;α∗ι(∅)]
(r.e.)
= E[πι(∅)|ā1; ᾱι(∅)]

(m.eq.)

≥

E[πι(∅)|a1; ᾱι(∅)]
(cons.)

= E[πι(∅)|a1; ᾱι(a1)]
(anger)

≥

E[πι(∅)|a1;α∗ι(a1)]
(cons.)

= E[πι(∅)|a1;α∗ι(∅)].

This completes the proof that (σ∗, β∗) is a SE if the decision-utility functions
are of the ABB or ABI kind. If there are only two players, then we have a
leader-follower game and SA is equivalent to ABB (Remark 1). Therefore,
(σ∗, β∗) is a SE in this case too. �

We note that the assumption of a unique material-payoff SE holds gener-
ically in game forms with perfect information. It is quite easy to show by
example that without perfect information, or with chance moves, a material-
payoff SE need not be a SE with frustration and anger. The same holds for
some multistage game forms (see the analysis of Section 6). Disregarding
chance moves, randomization, and ties, the common feature of material-
payoff equilibria that are not realization-equivalent to equilibria with frus-
tration and anger is the following (see also Example 9 below): An off-path
frustrated player j wants to hurt co-player k which implies rewarding a pre-
ceding on-path player i; this makes it impossible to satisfy both i’s incentive
to not deviate and j’s incentive to punish.
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We close this section with three examples, which combine to illustrate
how our SE concept works (including a weakness) and that the notions of
SA, ABB (both versions), and ABI may alter material incentives, and may
produce different predictions.

Example 8 Consider Figure C (“Hammering one’s thumb”). With uABBa

(either version), or uABIa , Andy will not blame Bob so his SE-choice is the
material-payoff equilibrium, N . But with uSAa Andy may take it out on Bob
(i.e., choose T ). Recall that Fa(B;αa) = 2(1 − ε) + εαa(N |B) − 1, so the
more likely Andy believes it to be that he will take it out on Bob, the less he
expects initially and the less frustrated he is when B happens. Yet, in SE,
the more prone to get angry he is (as measured by θa) the more likely that
he will take it out on Bob: Andy’s utility from N and T is

uSAa (B,N ;αi) = 1− θa[2(1− ε) + εαa(N |B)− 1] · 1,
uSAa (B, T ;αi) = 0− θa[2(1− ε) + εαa(N |B)− 1] · 0 = 0.

Sequential rationality of SE implies that one possibility is αa(N |B) = 1 and
uSAa (B,N ;αi) ≥ uSAa (B, T ;αi), implying θa ≤ 1

1−ε . Another possibility is
αa(N |B) = 0 and uSAa (B,N ;αi) ≤ uSAa (B, T ;αi), implying θa ≤ 1

1−2ε
. If

θa ∈ ( 1
1−ε ,

1
1−2ε

), we can solve for a SE where uSAa (B,N ;αi) = uSAa (B, T ;αi)

and αa(N |B) = 1
εθa
− 1−2ε

ε
∈ (0, 1). N

The case where θa ∈ ( 1
1−ε ,

1
1−2ε

) illustrates how we cannot take for granted
that a SE exists where players use deterministic plans (a point relevant also
for uABBi or uABIi in other games). Here this happens in a game form with a
single active player, highlighting that we deal with a psychological game, as
this could not be the case in a standard game.

Example 9 Consider Figure A (“Asymmetric Punishment”). Can the material-
payoffequilibrium outcome (U,L) be part of a SE with frustration and anger?
The answer is yes under ABI and the blaming-unexpected-deviations version
of ABB. To see this note that Ann and Bob act as-if selfish (as they are not
frustrated). Hence they would deviate if they could gain material payoff. In
the SE, they would expect 5 if not deviating, making Ann the sole deviation
candidate (she’d get 6 > 5 were Penny to choose P ; for Bob, 5 is the best
he could hope for). Ann deviating can be dismissed though, since if (D,L)
were reached Penny would not blame Bob (the only co-player she can punish)
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under either relevant blame function, and so she would choose N (regardless
of θp). Under SA and the could-have-been version of ABB, however, it may
be impossible to sustain a SE with (U,L); at (D,L) Penny would blame each
of Ann and Bob (as explained earlier). By choosing P she hurts Bob more
than she helps Ann and would do so if

uABBp ((D,L), P ;αp) > uABBp ((D,L), N ;αp)

⇐⇒
0− 6θpBpa((D,L);αp) > 1− 8θpBpa((D,L);αp).

The rhs of the last inequality uses Bpb((D,L);αp) = Bpa((D,L);αp). Since
Bpa((D,L);αp) = Fp((D,L);αi) = 1 > 0, Penny would choose P if −6θp >
1− 8θp ⇐⇒ θp > 1/2, so Ann would want to deviate and choose D. N

Example 10 Consider Figure B (“Ultimatum Minigame”). By Proposition
1, every utility function discussed admits the unique material-payoff equilib-
rium (g, y) as a SE, regardless of anger sensitivity. To check this directly,
just note that, if Bob expects g, he cannot be frustrated, so —when asked
to play —he maximizes his material payoff. Under SA and ABB (both ver-
sions), (f, n) qualifies as another SE if θb ≥ 1/3; following g, Bob would be
frustrated and choose n, so Ann chooses f . Under ABI (f, n) cannot be an
SE. To verify, assume it were, so αa(f) = 1. Since the SE concept does not
allow for players revising beliefs about beliefs, we get βb(αa(f) = 1|g) = 1
and Bba(g; βb) = 0; Bob maintains his belief that Ann planned to choose
f , hence she intended to maximize Bob’s payoff. Hence, Bob would choose
y, contradicting that (f, n) is a SE. Next, note that (g, n) is not a SE un-
der any concept: Given SE beliefs Bob would not be frustrated and so he
would choose y. With ABI, the only way to observe rejected offers with
positive probability in a SE is with non-deterministic plans. To find such
a SE, note that we need αa(g) ∈ (0, 1); if αa(g) = 0 Bob would not be
reached and if αa(g) = 1 he would not be frustrated, and hence, he would
choose y. Since Ann uses a non-degenerate plan she must be indifferent, so
αb(y) = 2/3, implying that Bob is indifferent too. In SE, Bob’s frustration
is
[
2 (1− αa(g)) + 2

3
αa(g)− 1

]+
=
[
1− 4

3
αa(g)

]+
, which equals his blame of
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Ann under SA and ABB. Hence we get the indifference condition

1− θb
[
1− 4

3
αa(g)

]+

· 3 = 0− θb
[
1− 4

3
αa(g)

]+

· 0
⇐⇒

αa(g) =
3

4
− 1

4θb
,

where θb ≥ 1/3. The more prone to anger Bob is the more likely he is to
get the low offer, so Bob’s initial expectations, and hence his frustration and
blame, is kept low. Under ABI we get another indifference condition:

1− θbBba(g; βb) · 3 = 0− θbBba(g; βb) · 0
⇐⇒

1− θb min

{
1− 4

3
αa(g),

4

3
αa(g)

}
· 3 = 0.

The left term in braces is Bob’s frustration while

4

3
αa(g) = 2−

[
2(1− αa(g)) +

2

3
αa(g)

]
is the difference between the maximum payoff Ann could plan for Bob and
her actually planned one. The first term is lower if αa(g) ≥ 3/8; so, if
we can solve the equation for such a number, we duplicate the SA/ABB-
solution; again, this is doable if θb > 1/3. If θb ≥ 2/3, with ABI, there
is second non-degenerate equilibrium plan with αa(g) ∈ (0, 3

8
) such that

αa(g) = 1/4θb; to see this, solve the ABI indifference condition assuming
that 4

3
αa(g) ≤ 1 − 4

3
αa(g). This SE exhibits starkly different comparative

statics; the more prone to anger Bob is, the less likely he is to get a low offer
and the less he blames Ann following g in light of her intention to choose f
with higher probability. N

In the last example we explained why with ABI (f, n) cannot be an SE.We
find the interpretation unappealing. If Bob initially expects Ann to choose
f , and she doesn’t, so that Bob is frustrated, then he would rate her choice a
mistake and not blame her! It may seem more plausible for Bob not to be so
gullible, and instead revise his beliefs of Ann’s intentions. The SE concept
rules that out. Because of this, and because it makes sense regardless, we
next define an alternative concept that to a degree overcomes the issue.
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5.2 Polymorphic sequential equilibrium (PSE)

Suppose a game is played by agents drawn at random and independently
from large populations, one for each player role i ∈ I. Different agents in the
same population i have the same belief-dependent preferences,20 but they
may have different plans, hence different beliefs about paths, even if their
beliefs agree about the behavior and beliefs of co-players −i. In this case,
we say that the population is “polymorphic.”Once an agent playing in role i
observes some moves of co-players, he makes inferences about the intentions
of the agents playing in the co-players’roles.
Let λi be a finite support distribution over Σi × ∆2

i , with Suppλi =
{(σt1i , βt1i ), (σt2i , βt2i ), ...}. We interpret λi as a statistical distribution of plans
and beliefs of agents playing in role i and, for every (σti , βti) ∈ Suppλi, we
let λti denote the fraction of agents in population i with plan and beliefs
(σti , βti).

21 We refer to such index ti as a “type”of i.22 Also, we denote by

Ti(λi) =
{
ti : (σti , βti) ∈ Suppλi

}
the set of possible types of i in distribution λi. Also, we write T−i(λ−i) =
×j 6=iTj(λj) for the set of profiles of co-players’types.
Let us take the perspective of an agent of type ti who knows that the

distribution over co-players’ types is λ−i =
∏

j 6=i λj and believes that the
behavior of each tj is indeed described tj’s plan σtj (in principle, ti may
otherwise believe that tj behaves differently from his plan). Then it is possible
to derive the conditional probability of a type profile t−i given history h.
Given that beliefs satisfy independence across players (everybody knows that
there is independent random matching), the distribution is independent of ti
and can be factorized. In the current two-stage setting we have:

λ−i(t−i|∅) =
∏
j 6=i

λj(tj|∅) =
∏
j 6=i

λtj ,

20Recall that we are not modelling incomplete information.
21The marginal of λi on Σi is a behavior strategy mixture (see Selten 1975).
22They are “types” in the sense of epistemic game theory (e.g. Battigalli, Di Tillio &

Samet 2013).
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and

λ−i(t−i|a1) =

∏
j 6=i σtj(a

1
j)λtj∑

t′−i∈T−i(λ−i)
∏

j 6=i σt′j(a
1
j)λt′j

=

∏
j 6=i σtj(a

1
j)λtj∏

j 6=i
∑

t′j∈Tj(λj)
σt′j(a

1
j)λt′j

=
∏
j 6=i

σtj(a
1
j)λtj∑

t′j∈Tj(λj)
σt′j(a

1
j)λt′j

.

for all t−i and a1, provided that
∑

t′j
σt′j(a

1
j)λt′j > 0 for each j 6= i. Letting

λj(tj|a1) =
σtj(a

1
j)λtj∑

t′j∈Tj(λj)
σt′j(a

1
j)λt′j

,

we get
λ−i(t−i|a1) =

∏
j 6=i

λj(tj|a1).

We say that λj is fully randomized if σtj is strictly positive for every type
tj ∈ Tj(λj). If each λj is fully randomized, then, for all h ∈ H, λ−i(·|h) is
well defined, with λ−i(t−i|h) =

∏
j 6=i λj(tj|h) for all t−i ∈ T−i(λ−i).

Definition 3 A polymorphic assessment is a profile of finite support
probability measures λ = (λi)i∈I ∈ ×i∈I∆(Σi×∆2

i ) such that, for every i ∈ I
and ti ∈ Ti(λi), σi,ti is the behavior strategy obtained from βti as per (11).
A polymorphic assessment λ is consistent if there is a sequence (λn)∞n=1 of
polymorphic assessments converging to λ such that, for all j ∈ I and n ∈ N,
λnj is fully randomized, and
(a-p) for all h ∈ H, a ∈ A(h), and ti ∈ Ti(λni ),

αnti,−i(a−i|h) =
∏
j 6=i

∑
tj∈Tj(λnj )

σntj(aj|h)λnj (tj|h).

(b-p) for all h ∈ H and ti ∈ Ti(λni ),

marg∆1
−i
βnti(·|h) =

∑
t−i∈T−i(λn−i)

λn−i(t−i|h)δαnt−i
,

where, for all j ∈ I, tj ∈ Tj(λnj ) and n ∈ N, αntj is the first-order CPS derived
from βntj .
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Condition (a-p) extends the independence condition (a) of Definition 1
to the multiple-types setting. Condition (b-p) implies that, conditional on
the co-players’types, everyone has correct beliefs about the beliefs of others,
including their plans, but uncertainty about co-players’types allows for un-
certainty and meaningful updating about such beliefs. Conditions (a-p) and
(b-p) imply that different types of the same player share the same beliefs
about co-players, but may have different plans. Therefore, Definition 3 is
a minimal departure from the notion of consistent assessment, allowing for
uncertainty and meaningful updating about the plans, hence intentions, of
co-players.

Definition 4 A polymorphic assessment λ is a polymorphic sequential
equilibrium (PSE) if it is consistent and satisfies the following sequential
rationality condition: for all h ∈ H, i ∈ I(h), and ti ∈ Ti(λi),

Suppσti(·|h) ⊆ arg max
ai∈Ai(h)

ui(h, ai; βti).

Remark 3 Every SE is a degenerate (or monomorphic) PSE. Therefore,
Theorem 3 implies that, if every decision-utility function ui(h, ·; ·) (i ∈ I ,
h ∈ H) is continuous, then there is at least one PSE. In particular, every
game with SA, ABB, or ABI has at least one PSE.

Finally, we demonstrate how the PSE alters predictions in the Ultimatum
Minigame and in leader-followers games more generally.

Example 11 Consider again the UltimatumMinigame in Figure B. If |Suppλi| =
1 for all i, then our results for the SE analysis still hold as a special case of the
more general PSE analysis. Interesting new possibilities arise if |Suppλa| = 2
though. Recall that, in the SE with SA/ABB utility functions and non-
degenerate plans of Example 10, we had αa(g) = 3

4
− 1

4θb
(with θb > 1/3)

to keep Bob indifferent. Suppose instead there are two types of Ann, a
fraction of 3

4
− 1

4θb
of them planning to choose g while the others plan for

f . There is a corresponding PSE where (naming Ann’s types by planned
choice) Suppλa = {(f, βf ), (g, βg)}, αf (y|g) = αg(y|g) = αb(y|g) = 2/3, and
this holds for also for ABI, not only SA and ABB. The first-order belief of
type f of Ann, αf , is derived from βf , etc. Bob initially believes Ann is either
an f -type or a g-type, assigning probability λg = 3

4
− 1

4θb
to the latter possi-

bility. Following g he ceases to assign positive probability to being matched
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with an f -type, assigning instead probability 1 to the g-type, a meaningful
form of updating about Ann’s intentions implied by consistency (Def. 3).
This inference makes ABI work exactly as ABB (and SA). Bob’s frustration
is as in Example 10, so equal to his blame of Ann for each blaming func-
tion. So again Bob is indifferent between y and n, and sequentially rational
if αb(y|g) = 2/3. Condition αf (y|g) = αg(y|g) = 2/3 implies that both types
of Ann are indifferent, hence sequentially rational. Thus, starting with the
non-degenerate SE under ABB (and SA) we obtained a PSE, under every
blaming function, where Ann’s plan is purified.

The observation of the previous example can be generalized to all leader-
followers games:23

Proposition 2 Consider a leader-followers game and an arbitrary parame-
ter profile (θi)i∈I . Every SE of the psychological game with decision-utility
functions (uABBi,θi

)i∈I [or (uSAi,θi)i∈I ] where the behavioral strategy of the leader
has full support corresponds to a PSE of the psychological game with decision-
utility functions (uABIi,θi

)i∈I and (uABBi,θi
)i∈I [or (uSAi,θi)i∈I ] where the leader is

purified.

Proof We denote the leader by ι(∅). Let (σi, βi)i∈I be a SE under
ABB/SA with parameter profile (θi)i∈I , and suppose that Suppσι(∅)(·|∅) =
Aι(∅)(∅). Construct a polymorphic consistent assessment λ̄ as follows: For
each follower i, Ti(λ̄i) = {ti} (a singleton) and

(
σ̄ti , β̄ti

)
= (σi, βi). For the

leader ι(∅), Tι(∅)(λ̄ι(∅)) = Aι(∅)(∅), and, for each type aι(∅), σ̄aι(∅)(aι(∅)|∅) =

1 and ᾱaι(∅)(·|a1) = σ−i(·|a1) for all non-terminal a1, where ᾱaι(∅) is the first-
order belief derived from β̄aι(∅) . By construction, each type of leader is indif-
ferent, because the leader (who acts as-if selfish) is indifferent in the original
assessment (σi, βi)i∈I . As for the followers, they have the same first-order
beliefs, hence the same second-stage frustrations as in (σi, βi)i∈I . Under
ABB/SA, blame always equals frustration in leader-followers games. As for
ABI, Bayes’rule implies that, after observing a1 = aι(∅), each follower be-
comes certain that the leader indeed planned to choose aι(∅) with probability
one, and blame equals frustration in this case too. Therefore, the incentive
conditions of the followers hold in λ̄ as in (σi, βi)i∈I for all kinds of decision
utility (ABI, ABB, SA) under the same parameter profile (θi)i∈I . �
23Recall that, by Remark 1, SA is equivalent to both versions of ABB in such games.
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6 Multistage extension

In a multistage game form, a (non-empty) non-terminal history is a sequence
of action profiles, h = (a1, ..., at) where t ≥ 1. As in the two-stage case,
we assume that actions are observable; hence, every non-terminal history
is public. Our notation for the multistage setting is essentially the same as
before (see Table 1). The set of sequences observable by player i also includes
personal histories of the form (h, ai): Hi = H ∪ {(h, ai) : h ∈ H, ai ∈ Ai(h)}.
A CPS for player i over paths and beliefs of others is an array of probabil-

ity measures βi = (βi (·|hi))hi∈Hi ∈ [∆ (Z ×∆−i)]
Hi satisfying conditions (2)-

(3), which apply to the multistage setting as well. With this, also the notation
on first- and second-order beliefs is the same as before: αi ∈ ∆1

i = ∆Hi(Z),
βi ∈ ∆2

i = ∆Hi(Z × ∆1
−i). As before, αi is first-order CPS derived from

βi when they appear in the same formula. The definitions of the equilib-
rium concepts SE and PSE can be applied to the multistage setting without
modifications.
We distinguish between two extreme scenarios according to the behav-

iorally relevant periodization: In the slow-play scenario, stages correspond
to periods, and the reference belief of player i at the beginning of period
(stage) t + 1 is given by his belief at the beginning of period t. In the fast-
play scenario, the different stages of the game occur in the same period
and the relevant reference belief of player i in each stage t is given by his
initial belief, that is, his belief at the root ∅.24 Regardless of the scenario,
we maintain the assumption that blame is continuous in beliefs and capped
by frustration, Bij (h; βi) ≤ Fi (h;αi), and that Bij (h; βi) = Fi (h;αi) in the
case of simple anger.

6.1 Slow play

We start with this scenario because it allows for a relatively simple extension
of the two-stage setting, with initial beliefs replaced by one-period-lagged
beliefs: For any non-terminal history of the form h = (h̄, a) the frustration

24Of course, in applications we may have intermediate cases, as in alternating-offer
bargaining models where a period is composed of two stages. But the two extreme scenarios
are suffi cient to convey the main ideas.
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of i conditional on h given αi is

Fi (h;αi) =

[
E[πi|h̄;αi]− max

ai∈Ai(h)
E[πi| (h, ai) ;αi]

]+

.

(When h̄ = ∅ and h = a1, we are back to the two-period formula.) With
this, the decision-utility of action ai ∈ Ai(ht) has the general form (4), where
the blame functions Bij (h; βi) are of the SA, ABB, or ABI type. Specif-
ically: Bij (h; βi) = Fi (h;αi) for SA, whereas the could-have-been blame,
blaming deviations, and blaming intentions can be defined with straightfor-
ward adaptations of (8), (9), and (10) respectively; therefore we omit the
details.
This extension of the two-stage setting has the stark feature that past

frustrations do not affect current behavior. A more nuanced version of the
slow-play scenario features a decaying effect of past frustrations, as in the
following version of the SA decision-utility: Let h≤k denote the prefix of
length k of a history h of length t ≥ k (with h≤0 = ∅), then i’s cumulated
frustration at the beginning of period t+ 1 conditional on h given αi is

F̄i(h;αi) =
t∑

k=1

(1+di)
k−t
[
E[πi|h≤k−1;αi]− max

ai∈Ai(h≤k−1)
E[πi|

(
h≤k−1, ai

)
;αi]

]+

,

where di ≥ 0 is a decay-rate parameter, and

uSAi (h, ai;αi) = E [πi|(h, ai);αi]− θi
∑
j 6=i

F̄i(h;αi)E [πj|(h, ai);αi] .

As di →∞, F̄i(h;αi)→ Fi (h;αi) and we are back to the simple formulation
where past frustrations do not affect current behavior.
A detail in modeling game forms becomes relevant in the slow play sce-

nario: We have to explicitly allow for non-terminal histories after which no
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player (not even chance) is active, such as history g in Figure D.

Figure D. Ultimatum Minigame with delayed reply.

Formally, at such histories there is only one feasible action profile, because
each player has only one feasible action, to wait. In the two-periods setting
this detail is irrelevant: If nobody is active at the root, play effectively starts
(and ends) in the second period; if nobody is active at a1, a1 can be modeled
as a terminal history. But with more than two periods, having to wait may
affect behavior.

Example 12 Consider Figure D. Suppose that Bob initially expects the fair
offer f with positive probability. Then in period 2 after the greedy offer g
he is frustrated, but cannot hurt Ann because he has to wait. In period
3, Bob’s lagged expectation has fully adapted downward, hence there is no
“incremental frustration”in this period. According to our simple slow-play
model, the frustration experienced by Bob in period 2 does not affect his
decision utility in period 3: Bob fully “cools off”and behaves as-if selfish.
Therefore the unique (polymorphic) SE outcome of the game is (g, w, y),
where w denotes waiting. In the model with decay the result is the same
if db is large relative to θb: If Bob is initially certain of f , Bob’s cumulated
frustration at (g, w) is 1/(1 + db) and he accepts if 1+d

3θ
> 1. In this case,

only (g, w, y) is a (polymorphic) SE; otherwise, there is a multiplicity of
equilibrium outcomes including (f, w, y). N
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6.2 Fast play

When play is fast, all the stages belong to the same period, therefore the refer-
ence belief that determines player i’s frustration conditional on any history is
i’s initially expected monetary payoff. Thus, i’s frustration at h given αi is

Fi(h;αi) =

[
E[πi;αi]− max

ai∈Ai(h)
E[πi|(h, ai);αi]

]+

.

This implies that there cannot be any “cooling off” due to reference-point
acclimatization. Formally, histories where nobody (not even chance) is active
play no role and can be deleted from the game form without affecting the
analysis. For example, in the fast-play scenario, the ultimatum game form
of Figure D is equivalent to the one of Figure B. The fast-play frustration
formula can be plugged into the SA decision-utility function (6).
As for the ABB decision-utility, let us first extend the general property

(7) of the blaming function Bij:

Bij(h;αi) =

{
0, if j /∈ I(h′) for all h′ ≺ h,
Fi(a

1;αi), if {j} = I(h′) for all h′ ≺ h.
(12)

In words, co-player j cannot be blamed if he was never active in the past,
and he is fully blamed if instead he was the only active player. A relatively
simple extension of could-have-been blame satisfies this property:

Bij(h;αi) = min

{[
max

h′≺h,a′j∈Aj(h′)
E
[
πi|(h′, a′j);αi

]
− E[πi|h;αi]

]+

,Fi(h;αi)

}
.

(13)
We can follow a similar logic to extend ABI.

Remark 4 If Bij is defined by (13), then it satisfies (12).

Proof Fix h ∈ H. First note that if j was never active before, then
Aj(h

′) is a singleton for each h′ ≺ h, hence the term in brackets of (13)
is zero. Next suppose that i is frustrated at h and j was the only active
player in the past. Then there must be some h̄ ≺ h such that j devi-
ated from i’s expectations αi(·|h̄) for the first time, that is, h̄ is the short-
est predecessor h′ ≺ h such that αj(a′j|h′) < 1 for (h′, a′j) � h. Such
h̄ must have probability one according to the initial belief αi(·|∅), thus
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E[πi|h̄;αi] = E[πi;αi]. Since maxa′j∈Aj(h̄) E
[
πi|(h̄, a′j);αi

]
≥ E[πi|h̄;αi], we

have maxa′j∈Aj(h̄) E
[
πi|(h̄, a′j);αi

]
≥ E[πi;αi]. Therefore

max
h′≺h,a′j∈Aj(h′)

E
[
πi|(h′, a′j);αi

]
− E[πi|h;αi]

≥ max
a′j∈Aj(h̄)

E
[
πi|(h̄, a′j);αi

]
− E[πi|h;αi]

≥ E[πi;αi]− E[πi|h;αi]

≥ E[πi;αi]− max
ai∈Ai(h)

E[πi|(h, ai);αi] = Fi(h;αi),

which implies Bij(h;αi) = Fi(h;αi) according to (13). �

The following example illustrates our definition at work, elucidating a
specific modeling choice:

Figure E. Multistage Ultimatum featuring Zoë.

Example 13 Consider the game form in Figure E (material payoffs are in
alphabetical order). If Zoë chooses In, then Ann and Bob interact in an
ultimatum minigame, but Zoë may instead exercise outside options and play
(Out, x) or (Out, y). Zoë’s payoffs equal Bob’s, except following (Out, y)
where a payoff transfer from Ann to Bob occurs, relative to (Out, x). Can
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strategy profile ((In, x), f, n) be a SE under ABB? Given equilibrium beliefs,
this is the case if 0−θb ·1·0 ≥ 1−θb ·1·3, or θb ≥ 1/3. The calculation involves
Bob blaming Ann, not Bob blaming Zoë, because if Zoë switched from In
to Out (thus implementing (Out, x) instead of In) this would not improve
Bob’s payoff. This reflects a non-obvious modeling choice. Our definition
assesses blame on the basis of single-agent deviations from the realized path,
but if Bob alternatively assessed blame on the basis of multi-agent deviations,
including off-realized-path deviations, he would consider that Zoë could have
played (Out, y). She would then have increased Bob’s payoff from 1 to 2,
preventing his frustration of 1. If Bob’s blame of Zoë were thus 1 then
((In, x), f, n) would be a SE under ABB if 0−θb ·1 ·0 ≥ 1−θb ·1 ·3−θb ·1 ·1,
or θb ≥ 1/4 6= 1/3. (This also shows that SE under ABB is not invariant with
respect to coalescing sequential moves.) Finally, note that also ((In, y), f, n)
is a SE under ABB in the fast-play scenario for θb ≥ 1/4, because at (In, g)
Zoë would be blamed for not switching to Out (implementing (Out, y)); but
it is a SE under ABB in the slow-play scenario for larger parameter values,
θb ≥ 1/3, because Bob would be frustrated only in the third period, after
(In, g), and Zoë —who played in the first, could not be blamed. N

The single- vs. multi-agent deviation issue illustrated through this ex-
ample can arise also in two-stage games (that involve simultaneous moves),
but the point is clearer, and perhaps more relevant, in games with n ≥ 3
stages. While noting the issue, we defend our chosen formulation thrice: It
harmonizes well with the way we define rational play in this paper, where
players optimize only locally (although in equilibrium they predict correctly
and choose as planned). The (hinted at) alternative definition would be for-
mally very convoluted. It is an open issue which formulation is empirically
more relevant, so we stick with what is simpler.

6.3 Counterfactual anger and a unique SE in a hold-up
problem

It is important to emphasize, in a separate section, that anger (and in fact
emotions more generally) can shape behavior without occurring. If anger
is anticipated, this may steer behavior at preceding histories down paths
that render the sentiment counterfactual (see Remark 2). We already saw
examples, e.g., (f, n) is a SE in the Ultimatum mini-game, alongside (g, y).
Our next example, highlights how there may be circumstances where the
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SE is unique and has that property. It furthermore illustrates a difference
between fast and slow play.

Figure F. Hold-up.

Example 14 Modify the Ultimatum mini-game by adding an initial move
for Bob, as seen in Figure F, to get an illustration of a hold-up problem (see
Dufwenberg, Smith & Van Essen, 2013).25 Under fast play, for each utility
function seen so far,26 if θb > 2/3, there is a unique SE: Bob plays (r, n)
and Ann plays f . To verify this, the key step is to check that the strategy
profile where Bob plays (l, y) and Ann plays g is not an SE; if Bob initially
expects $1.5, off-path at (r, g), he would be frustrated and hence would want
to deviate to n. N

With slow play, by contrast, following r, with θb > 2/3, SE play exhibits
multiplicity, exactly as in the Ultimatum mini-game.

25Bob and Ann face a joint business opportunity worth (2, 2) via path (r, f); however,
r involves partnership-specific investment by Bob, which Ann can exploit by choosing g
to renege, etc. As always, we list payoffs by alphabetical order of players: (πa, πb).
26Except the blaming-unexpected-deviations version of ABB, which we did not define

explicitly for fast play.
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7 Discussion

Incorporating the effects of emotions in economic analysis is a balancing act.
One wants to focus on sentiments that make empirical sense, but human
psychology is multi-faceted and there is no unambiguous yardstick. Our cho-
sen formulation provides a starting point for exploring how anger shapes
economic interaction, and experimental or other evidence will help to assess
empirical relevance and suggest revised formulas. We conclude by discussing
topics that one way or another may be helpful for gaining perspective on,
building on, or further developing our work. It is a mixture of commentary
on chosen concepts, comparisons with related notions in the literature, and
remarks about empirical tests.

Frustration The psychological evidence, cited in the Introduction, says
that a player becomes frustrated when his goals are unexpectedly thwarted.
We addressed but one aspect, concerning own material rewards. Cases 1-3
of the Introduction indicate the broad applied potential. Nevertheless, our
focus is restrictive, in that one may imagine other sources of frustration. To
see this, consider two more cases:

Case 4: In 2007 Apple launched its iPhone at $499. Two months
later they introduced a new version at $399, re-priced the old
model at $299, and caused outrage among early adopters. Apple
paid back the difference. Did this help long run profit?

Case 5: The 2008 TARP bank bail-out infuriated some US vot-
ers. Did this ignite the Tea Party/Occupy-WS movements?

These cases make sense, but our analysis does not address them directly
(which is why we used other cases in the Introduction). In case 4, an early
adopter is frustrated because he regrets he already bought, not because new
information implies that his expected rewards drop. In case 5, an activist
may be materially unaffected personally, yet frustrated because of unexpected
perceived unfairness. Some meaningful ways to get frustrated are left for
future research.
As regards the effects of frustration, we considered changes to a player’s

utility function but we neglected other plausible adjustments. Gneezy & Imas
(2014) report data from an intriguing experiment involving two-player zero-
sum material payoff games. In one game players gain if they are powerful, in
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the other they are rewarded for being smart. Gneezy & Imas (2014) explore
an added game-feature: before play starts, one subject may frustrate his
opponent and force him to hang around in the lab to do boring tasks after
the play ends. A thus frustrated player’s performance is enhanced when
strength is beneficial (possibly from increased adrenaline flow), but reduced
in the game where cool logic is called for (as if an angered player becomes
cognitively impaired). Our model can capture the first consideration, but
not the second. Specifically, we can let the consequences of play depend
on beliefs as well as actions, e.g., because emotions affect strength or speed
(cf. Rauh & Seccia 2006); this ultimately translates into belief-dependent
utility of actions that can capture the first effect. But, to capture the second
effect, we would need a theory of endogenous cognitive abilities of boundedly
rational players.

Valence and action-tendency Psychologists classify emotions in mul-
tiple ways. Two prominent aspects are valence, or the value the decision-
maker associates with a sentiment, and action-tendency, or how behavior is
shaped as the sentiment occurs. Both notions may, in principle, have bearing
on anger. For example, anger may have negative valence, say if a frustration-
laden life is taxing or decreases longevity. Perhaps such considerations steer
people to avoid frustrations, say by not investing in the stock market. That
said, the distinguishing feature of anger that psychologists stress concerns
its action-tendency of aggression, not its valence. In developing our theory,
we have exaggerated this, abstracting away from valence altogether while
emphasizing aggression. This is reflected in the decision utility functions,
which are shaped by current frustration, but there is no notion of valence.
Anticipated future frustrations do not affect decision utility.27

Blame We explored various ways a player may blame the frustration he
experiences on others, yet more notions are conceivable. For example, with
anger from blaming behavior player i’s blame of j depends on what i believes
he would truly get at counterfactual histories, not on the most he could get

27In previous work we modeled another emotion, namely guilt — see, e.g., Battigalli
& Dufwenberg (2007), Chang, Smith, Dufwenberg & Sanfey (2011). To gain further
perspective one may note that in that work our approach to valence and action-tendency
was the opposite. Guilt may have valence (negative!) as well as action-tendency (say
to engage in “repair behavior”; see e.g. Silfver (2007). In modeling guilt we highlighted
valence while neglecting action-tendency.
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there were he not to vent any anger there. We would defend this modeling
choice as a reflection of local agency and abstracting away from valence; i’s
current agent views other agents as uncontrollable, and he has no direct care
for their frustrations.
Another example relates to how we model anger from blaming intentions:

i’s blame of j depends on βi, his second-order beliefs. Recall that the in-
terpretation concerns beliefs about beliefs about material payoffs. It does
not concern beliefs about beliefs about frustration, which would be third-
rather than second-order beliefs. Battigalli & Dufwenberg (2007), in a con-
text which concerned guilt rather than anger, worked with such a third-order
belief based notion of blame.
Our blame notions one way or another assess the marginal impact of

other players. For example, consider a game where i exits a building while
each j ∈ I\{i}, unexpectedly to i, simultaneously hurls a bucket of water at
i, who thus gets soaked. According to our blame notions, i cannot blame j as
long as there are at least two hurlers. One could imagine alternatives where
i blames, say, all the hurlers on the grounds that collectively they could have
thwarted i’s misery.
Several recent experiments have explored interesting aspects of blame

(Bartling & Fischbacher 2012, Gurdal et al. 2014, Celen, Schotter & Blanco
2014). Is a field of the economics-of-blame emerging? We wish to emphasize
that our focus on blame is restricted to its relation to frustration only. Our
paper is not about blame more generally, as of course there are many reasons
besides frustration that may lead people to blame each other.28

Kőszegi & Rabin Card & Dahl (2011) show that reports of domestic
abuse go up when football home teams favored to win lose. They argue that
this is in line with Kőszegi & Rabin’s (2006, 2007) theory of expectations-
dependent reference points. One way to think of our paper is as providing a
formalization of that idea. Kőszegi & Rabin model the loss felt when a player
gets less than he expected, which one may think of as a form disappointment
with negative valence (cf. Bell 1985, Loomes & Sugden 1986). That account

28For example, Celen et al. (2014) present a model where i asks himself how he would
have behaved had he been in j’s position and had j’s beliefs, and where i blames j if j
appears to be less generous to i than i would have been. This involves that one player
may blame another even if he is not surprised/frustrated. Relatedly, one may imagine a
model where players blame those they consider unkind, as defined in reciprocity theory
(cf. the subsubsection below), again something independent of frustration.
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per se does not imply that aggression follows, but it may seem natural to add
such an angle. In other words, one may imagine a general model where dis-
appointment/frustration has negative valence as well as an action-tendency
of aggression. Kőszegi & Rabin’s model would be the modification that looks
at the negative valence part only. Our model of simple anger focuses on the
action tendency only, which is enough to capture the effect that Card & Dahl
(2011) found.29

Anger Management People aware of their inclination to be angry may
attempt to ‘manage’or ‘contain’it. Our players anticipate how frustrations
shape the behavior of themselves and others, and they may avoid or seek cer-
tain subgames because of that. However, there are other interesting related
phenomena that we do not address: Can player i somehow adjust θi say by
taking an “anger management class?”If so, would rational individuals want
to raise, or to lower, their θi? How might that depend on the game forms
they play? These are potentially relevant questions related to how we have
modeled action-tendency in this paper. Further issues would arise if we were
to add some valence aspects of anger.

Rotemberg’s approach In a series of intriguing papers Rotemberg ex-
plores how consumer anger shapes firms’ pricing (2005, 2011), as well as
interaction in ultimatum games (2008). He proposes (versions of) a theory
in which players are slightly altruistic, and consumers/responders also care
about their co-players’degrees of altruism. Namely, they abruptly become
very angry and punish a co-player whom they come to believe has an altru-
ism parameter lower than some (already low) threshold. “One can thus think
of individual i as acting as a classical statistician who has a null hypothesis
that people’s altruism parameter is at least as large as some cutoff value. If
a person acts so that i is able to reject this hypothesis, individual i gains
ill-will towards this person”(Rotemberg 2008, p. 464).
On the one hand, as a literal statement of what makes people upset,

this assumption does not match well our reading of the relevant psychology.
Recall that frustration is anchored in goal-blockage, where individual are
unexpectedly denied things they care about. Matters like “own payoff,”

29Modeling details distinguish how we measure frustration from how Kőszegi & Rabin
(2005, 2006) measure loss (e.g. concerning how we cap frustration at the highest attainable
as opposed to actual payoff).
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which is our focus, and “fairness” or “quality of past decisions,”which we
have mentioned, come to mind; a co-player’s altruism being λ rather than
λ − ε, where both λ and ε are tiny numbers, hardly does. On the other
hand, it is impressive how well Rotemberg’s model captures the action in his
data sets. It is natural to wonder whether our models could achieve that
too. As regards behavior in ultimatum (and some other) games, there is
already some existing evidence that is consistent with our modeling efforts;
see the discussion in the final subsection below. Regarding pricing, we leave
for empirical economists the task of exploring how our models might fare if
applied to Rotemberg’s data sets.

Negative reciprocity Negative reciprocity (cf. Rabin 1993, Dufwenberg
& Kirchsteiger 2004, Falk & Fischbacher 2006, Sebald 2010) joins anger as a
form of motivation that can trigger hostile action. In some cases implications
may be similar. However, anger and negative reciprocity differ in key ways
and it is instructive to point out how. The following sketched comparison is
with Dufwenberg &Kirchsteiger’s notion of sequential reciprocity equilibrium
(SRE; refer to their article for formal definitions):
First, in the Hammering-One’s-Thumb game of Figure C, Andy may take

it out on Bob if he is motivated by simple anger. If he were motivated by
reciprocity, this could never happen: Andy’s kindness, since he is a dummy-
player, equals 0, implying that a reciprocal Bob chooses as-if selfish. In
this example reciprocity captures intuitions similar to the ABI concept, as
perceived kindness assesses intentions similarly to how blame is apportioned.
Second, that analogy only carries so far, however. A player may be per-

ceived as unkind even if he fails to hurt another, whereas under all our anger
notions frustration is a prerequisite for hostile response. The following game

44



form illustrates:

Figure G. Failed attack.

If b is asked to play then a’s attack failed. Under reciprocity theory (suitably
augmented to allow incorporating a chance move; cf. Sebald 2010), b would
deem a unkind, and —if suffi ciently motivated by reciprocity —choose p in
response. By contrast, under our anger concepts (SA, ABB, and ABI) b
would not be frustrated, and since frustration is a prerequisite for hostility b
would choose n.
Third, reciprocity allows for so-called “miserable equilibria,”where a player

reciprocates expected unkindness before it occurs. For example, in the mini-
ultimatum game of Figure B, (g, n) may be a SRE. Ann makes the greedy
offer g despite believing that Bob will reject, because given her beliefs about
Bob’s beliefs, she perceives Bob as seeing this coming, which makes him
unkind, so she punishes him by choosing g. This pattern of self-fulfilling
prophecies of destructive behavior has no counterpart under either of our
anger notions. Since Ann moves at the root, she cannot be frustrated, and
hence, regardless of how prone to anger she may be in terms of anger sensi-
tivity, she chooses as-if selfish.30

30Another example would be the hold-up game of Figure F. We gave conditions under
which ((r, n), f) is the unique SE. By contrast, if Ann and Bob were motivated by reci-
procity, ((l, n), g) and ((r, n), g) can be SRE, with miserable interaction, respectively, off
and on the equilibrium path.
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Fourth, with reference to our discussion of cooling-off effects in section
6, these have no counterpart in Dufwenberg & Kirchsteiger’s theory, which
rather makes the same prediction in the games of Figures B and D. Reciprocal
players do not cool off, they say things like “la vengeance est un plat qui se
mange froid.”

Experimental testing Our models tell various stories of how interaction
may play out when players prone to anger interact. It is natural to wonder
about empirical relevance, and here experiments may be helpful. We would
like to offer several related remarks.
First, several existing experimental studies provide evidence in favor of

the notion that emotions drive behavior, and that many of them, and anger in
particular, are generated from comparisons of outcomes with expectations:
A number of studies find evidence for anger as the driving force behind
costly punishment. A few papers rely on emotion-self reports: Pillutla &
Murningham (1996) find that reported anger predicted rejections better than
perceived unfairness in ultimatum games. Fehr & Gächter (2002) elicited
self-reports of the level of anger towards free riders in a public goods game,
concluding that negative emotions including anger are the proximate cause
of costly punishment in the game. Other studies directly connect unfulfilled
expectations and costly punishment in ultimatum games. Schotter & Sopher
(2007) measure second-mover expectations in ultimatum games, concluding
that unfulfilled expectations drive rejections of low offers. Similarly, Sanfey
(2009) finds that psychology students who are told that a typical offer in the
ultimatum game is $4-$5 reject low offers more frequently than students who
are told that a typical offer is $1-$2.
A series of papers by Frans van Winden (with several coauthors) records

both emotions and expectations in the power-to-take game (which resembles
ultimatum games, but allows for partial rejections).31 These papers show
that second-mover expectations about first-mover take rates in power-to-take
games are a key factor in the decision to destroy income. Furthermore, they
find that anger-like emotions are triggered by the difference between expected
and actual take rates. In these experiments the difference between the take
rate and the reported fair take rate is not significant in determining anger-
like emotions, suggesting that deviations from expectations, rather than from

31Bosman & van Winden (2002), Bosman, Sutter & van Winden (2005), Reuben & van
Winden (2008).
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fairness benchmarks, drive both anger and the destruction of endowments in
the games. Reuben and van Winden also argue that existing models of
belief-dependent reciprocity miss an important trigger of anger by focusing
on equilibrium predictions where actions are correctly anticipated. In our
models anger arises only off the equilibrium path, addressing Reuben and
van Winden’s point that anger is triggered by unfulfilled expectations.
A propos the cooling off effects discussed in section 6, Grimm & Men-

gel (2011) ran ultimatum game experiments with a treatment that forced
responders to wait ten minutes before making their choice. Without delay
less than 20% of low offers were accepted while 60—80% were accepted if the
acceptance decision were delayed.
Finally, a literature in neuroscience connects expectations and social

norms to study the neural underpinnings of emotional behavior. In Xiang,
Lohrenz & Montague (2013), subjects respond to a sequence of ultimatum
game offers whilst undergoing fMRI imaging. Unbeknownst to subjects, the
experimenter controls the distribution of offers in order to manipulate beliefs.
The authors find that rejections occur more often when subjects expect high
offers relative to when they expect low offers. They make an important
connection between norm violations and reward prediction errors from rein-
forcement learning, which are known to be the computations instantiated by
the dopaminergic reward system. Xiang et al. note that “when the expecta-
tion (norm) is violated, these error signals serve as control signals to guide
choices. They may also serve as the progenitor of subjective feelings.”
Going forward, it would be useful to develop tests specifically designed

to target key features of our theory. For example, which version —SA, ABB,
ABI —seems more empirically relevant, and how does the answer depends on
context details (e.g., is SA perhaps more relevant for tired subjects?). Some
insights may again be gleaned from existing studies. For example, Gurdal
et al. (2014) study games where an agent invests on behalf of a principal,
choosing between a safe outside option and a risky alternative. If the latter
is chosen, then it turns out that many principals punish the agent if and
only if by chance a poor outcome is realized. This seems to indicate some
empirical relevance of our ABB solution (relative to ABI). That said, Gurdal
et al.’s intriguing design is not tailored to specifically test our theory (and
beliefs and frustrations are thus not measured), so more work seems needed
to draw clearer conclusions.
Finally, one must keep in mind that our models are abstractions. We theo-

rize about the consequences of anger while neglecting myriad other obviously
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important aspects of human motivation (say altruism, warm glow, inequity
aversion, reciprocity, social status, or other emotions like guilt, disappoint-
ment, regret, or anxiety). Our models are not intended to explain every data
pattern but rather to highlight the would-be consequences of anger, if anger
were the only form of motivation at play (in addition to material payoff, of
course). This statement may seem trivially obvious, but it has subtle impli-
cations for how to evaluate experimental work. To illustrate, consider again
the Failed Attack game form in Figure G and suppose that in an experiment
many subjects in player b’s position chose to punish (p). It would be silly to
say that this constitutes a rejection of our theory (which predicts n rather
than p), as what may obviously be going on is that one of the important
forms of motivation that our theory deliberately abstracts away from is af-
fecting subjects choices (presumably negative reciprocity, in line with our
observations in the previous subsection). It would be sensible to ask, how-
ever, if those choices of p were in fact driven by anger (as might be measured
by, e.g., emotion self-reports, physiological activity, or both, as in Chang et
al. 2011) and if they were (as opposed to being driven only by alternative
motivations that we abstract away from, like negative reciprocity), then that
would indicate that our theory could benefit from revision.
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[33] Kőszegi, B., and M. Rabin (2007): “Reference-Dependent Risk At-
titudes,”American Economic Review, 97, 1047-1073.

[34] Kreps D., and R. Wilson (1982): “Sequential Equilibrium,”Econo-
metrica, 50, 863-894.

[35] Loomes, G., and R. Sugden (1986): “Disappointment and Dynamic
Consistency in Choice under Uncertainty,”Review of Economic Studies,
53, 271-282.

[36] Passarelli, F., and G. Tabellini (2013): “Emotions and Political
Unrest,”Bocconi University, IGIER Working Paper 474.

[37] Pillutla, M., and K. Murningham (1996): “Unfairness, Anger,
and Spite: Emotional Rejections of Ultimatum Offers,”Organizational
Behavior and Human Decision Processes, 68, 208-224.

[38] Potegal, M., C. Spielberger and G. Stemmler (eds.) (2010):
International Handbook of Anger: Constituent and Concomitant Biolog-
ical, Psychological, and Social Processes. Springer Verlag.

[39] Rabin, M. (1993): “Incorporating Fairness into Game Theory and Eco-
nomics,”American Economic Review, 83, 1281-1302.

[40] Rauh, M. and G. Seccia (2006): “Anxiety and Performance: A
Learning-by-Doing Model,” International Economic Review, 47, 583-
609.

51



[41] Reuben, E., and F. van Winden (2008): “Social Ties and Coordi-
nation on Negative Reciprocity: The Role of Affect,”Journal of Public
Economics, 92, 34-53.

[42] Rotemberg, J. (2005) “Customer Anger at Price Increases, Changes
in the Frequency of Price Adjustment and Monetary Policy,”Journal of
Monetary Economics, 52, 829-852.

[43] Rotemberg, J. (2008): “Minimally Acceptable Altruism and the Ul-
timatum game,”Journal of Economic Behavior and Organization, 66,
457-476.

[44] Rotemberg, J. (2011): “Fair Pricing,”Journal of the European Eco-
nomic Association, 9, 952-981.

[45] Sanfey, A. (2009): “Expectations and Social Decision-making: Biasing
Effects of Prior Knowledge on Ultimatum Responses,”Mind and Society
8, 93-107.

[46] Schotter, A., and B. Sopher (2007): “Advice and Behavior in
Intergenerational Ultimatum Games: An Experimental Approach,”
Games and Economic Behavior, 58, 365-393.

[47] Sebald, A. (2010): “Procedural Concerns and Reciprocity,” Games
and Economic Behavior, 68, 339-352.

[48] Selten, R. (1975): “Re-Examination of the Perfectness Concept for
Equilibrium Points in Extensive Games,”International Journal of Game
Theory, 4, 25-55.

[49] Silfver, M. (2007): “Coping with Guilt and Shame: A Narrative Ap-
proach,”Journal of Moral Education, 36, 169-183.

[50] Smith, A. (2009): “Belief-Dependent Anger in Games,” typescript,
University of Arizona.

[51] Xiang, T., T. Lohrenz and R. Montague (2013): “Computational
Substrates of Norms and Their Violations during Social Exchange,”
Journal of Neuroscience, 33, 1099-1108.

52


