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Abstract

When cognitive load exceeds cognitive capacity, individuals may make poorer de-
cisions, especially when substantial deliberation is required. Deck and Jahedi’s (2015)
influential work on cognitive load found that individuals whose arithmetic performance
is most impacted by high cognitive load become more risk averse, less patient and more
subject to the anchoring effect. Since results of cognitive load manipulation studies are
mixed, replication of influential studies is essential to strengthen our understanding of
the effects of cognitive load. In this paper, we attempt to closely replicate Experiment
1 in Deck and Jahedi (2015). Though we observe similar effects of cognitive load on
arithmetic performance, we fail to replicate their overall results on risky choice and
impatience. While we are unable to clearly identify the reasons for this non-replication,
the evidence points to subtle differences in the allocation of attention and effort across
subject pools.
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1 Introduction

People have limited capacity to process information when making economic decisions.
When these capacity constraints bind, decisions may be noisy, biased, or both. Dual sys-
tems theory (e.g. Kahneman, 2011) suggests that when information processing is capacity-
constrained, decisions may be influenced by rapid and more intuitive (System I) processing,
which is also thought to be more prone to bias and impulsivity. Cognitive load may be
especially high among the poor, and the link between cognitive load and economic decision-
making may be important for understanding poverty traps (Shah et al., 2012; Dean et al.,
2019). Identifying mechanisms by which cognitive load affects economic choices can help to
explain the links between behavioral biases and bounded rationality.

Because it is closely related to the use of working memory (Colom et al., 2004), researchers
often study cognitive load using memorization tasks. A typical manipulation involves asking
subjects to remember a multi-digit number before a decision task, and then to report the
number after the decision. While the results of these studies have broadly been interpreted
as consistent with dual-systems theory, the effects of manipulating cognitive load are mixed.
For instance, Benjamin et al. (2013) find that cognitive load does not affect performance on
an arithmetic task, whereas in Deck and Jahedi (2015) cognitive load affects performance
on multiplication but not addition problems. Shiv and Fedorikhin (1999) and Hinson et al.
(2003) find that cognitive load makes people more impulsive and impatient, but the same
results are not observed in other studies (Benjamin et al., 2013; Deck and Jahedi, 2015).
Carpenter et al. (2013) show that cognitive load reduces strategic sophistication, whereas
in Allred et al. (2016), the relationship between cognitive load and strategic sophistication
is not consistent. Drichoutis and Nayga (2020) find that cognitive load affects performance
on a reasoning task, but does not affect economic rationality. While Whitney et al. (2008),
Benjamin et al. (2013), and Deck and Jahedi (2015) observe that cognitive load increases
small-stakes risk aversion, Blaywais and Rosenboim (2019) find that cognitive load increases
risk taking in the form of higher bids for lottery tickets involving non-negative payoffs. Since
the literature on cognitive load has not always produced a consistent result, more research
is clearly needed to understand the source of this inconsistency.

A sound starting point is to replicate significant studies, keeping the experimental design
as close as possible to the original, since some of this inconsistency may be due to differences
in experimental design. While conceptual replications attempt to verify the underlying
hypothesis of an earlier experiment, direct replications (e.g. Camerer et al., 2016) involve
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the repetition of an experimental procedure, to verify that the results of the experiment
are independent of the time, place, or persons involved (Schmidt, 2009). Maniadis et al.
(2014) demonstrate that even a few numbers of independent replications could dramatically
decrease the chance of type-I error or “false positive” results. We contribute to the literature
by performing a direct replication of Experiment 1 of Deck and Jahedi (2015, henceforth
DJ).

DJ study the effect of induced cognitive load on economic decisions in an incentivized
laboratory experiment involving a number of different tasks. They find that cognitive load
decreases arithmetic performance, increases risk aversion, and makes people more susceptible
to anchoring. Their results, in particular the increase in risk aversion under cognitive load,
are largely driven by the fraction of their sample whose performance on the arithmetic
task is most affected by increased cognitive load. DJ suggest that each of these results are
consistent with the dual-system framework, where cognitive load increases the workload of
the reasoning system and therefore leads to more intuitive, impulsive, or biased decisions.
This suggests that the effect of cognitive load may also vary according to cognitive ability or
capacity. A recent model of information processing with capacity constraints suggests that
small-stakes risk aversion may result from noisy perceptions of payoffs (Khaw et al., 2021),
consistent with the notion that cognitive load diminishes information processing capacity.

We conducted a preregistered direct replication of DJ, using their procedures and ex-
periment and data analysis code, obtained from the authors. To study whether effects of
cognitive load are related to cognitive ability, we followed the DJ replication with a working
memory task. Our design was powered to replicate the result that elevated cognitive load
increases risk aversion (see DJ Table 1a). This sample size also provides more than 80%
power for replications of DJ’s results linking time preference and anchoring effects to cog-
nitive load, and to replicate their result that increased cognitive load decreases arithmetic
performance, which we view as a manipulation check. One contribution of DJ’s design is
that it measures the systematic effect of cognitive load across multiple tasks. However, these
multiple measures increase the difficulty of determining what constitutes a successful repli-
cation. For example, DJ argue that their result demonstrating that cognitive load decreases
impatience results from the fact that the intertemporal choice task was not incentivized in
their Experiment 1, unlike the other tasks. They also conduct a second experiment, the
results of which reverse the intertemporal choice from the Experiment 1. Nevertheless, in
our preregistration statement, we defined a successful replication as showing significant re-
sults for the arithmetic, risk-taking, and intertemporal choice tasks. We did not include
the anchoring result in our definition of a successful replication, because DJ’s results do not
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show a significant effect of increased cognitive load on anchoring, though we report on those
results as well.

Although our experiment used the same instructions, experiment software, and incentives
as DJ, we failed to replicate their overall results on risky choice and intertemporal choice.
We do find an effect of cognitive load on performance in the arithmetic task, indicating that
the manipulation was successful. While participants in our sample show a strong anchoring
effect, we do not observe a significant effect of high cognitive load on anchoring.

DJ’s results are largely driven by the fraction of participants for whom cognitive load
has the strongest effect on arithmetic performance. While our replication study fails to
find a main effect of increased cognitive load on risk taking, a plausible conjecture from
DJ’s paper is that this failure to replicate might result from a failure of the cognitive load
manipulation or from subject pool differences in the effect of cognitive load in general.
That is, the effects of cognitive load might be different in our two samples, due possibly to
differences in cognitive abilities. We explore this conjecture using 1) DJ’s method of splitting
the sample according to the median of the performance decline for arithmetic, using the
median from our sample; 2) splitting our sample using DJ’s median; 3) Splitting our sample
using participants’ performance on the follow-up working memory task; and 4) Splitting
our sample using performance on the Cognitive Reflection Test. As we demonstrate, none
of these analyses demonstrates a significant relationship between cognitive load, cognitive
ability, and overall risk-taking in our data.

DJ’s risk-taking task involves involves both gain and loss frames. Their main result on
risk taking aggregates these measures. When we look separately at our subjects’ behavior
for both gains and losses, we find that in the pooled data participants are more risk averse
under cognitive load for gains, but less risk averse for losses. However, our aggregated results
appear to be driven by the sample composition; analyses using fixed-effects regressions fail
to find significant effects of cognitive load in our sample in either the gain or loss domain
(see Section 4.3).

An alternative explanation for the variation in results may be that cognitive load ma-
nipulations force experiment participants to choose how they allocate their scarce cognitive
resources. Variation in results from study to study may reflect how participants make this
effort allocation decision. Some support for this view is that the participants in our replica-
tion study perform better on the memorization task than those in DJ’s study. We return to
this notion of subject-pool differences in effort allocation in the discussion.
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Section 2 of our paper describes our preregistered replication of Experiment 1 from DJ.
The results of the pre-registration are presented in Section 3. We present the exploratory
analyses that use different strategies for splitting the sample into sensitive and insensitive
groups in Section 4. In Section 5 we explore whether subject pool differences might explain
our inability to reproduce DJ’s results. Section 6 contains a summary of this exercise and
conclusions.

2 Experiment

The replication study was preregistered at the Open Science Framework. The target
sample size was determined by power analyses.1 To best replicate DJ, we use a relatively
similar sample which consisted primarily of American university students. DJ recruited
participants on the campus of the University of Arkansas (UA sample, hereafter), while we
recruited participants at Virginia Tech (VT sample, hereafter). Both schools are research-
intensive land grant universities. We recruited a total of 218 subjects grouped into 11 sessions
for our two-hour study, and report results for 198 participants.2 The study was reviewed by
Virginia Tech’s institutional review board prior to data collection. All participants provided
informed consent. As in DJ, participants were paid for exactly one of their choices, so
including a $10 payment for participation, they earned an average of $23.13.

The goal of this project was to directly replicate Experiment 1 in DJ, so we obtained
the original computer program from the authors.3 We then reproduced the visual stimuli
used in the program so that they were compatible with the monitors in our lab. Screenshots
can be found in Figure A2. Following DJ, each session contained 80 trials divided into
two blocks. Forty trials were completed under low cognitive load with the rest under high
cognitive load. The order of the blocks was randomly determined for each participant.
Within each block each participant saw a unique series of randomly generated decision
problems. At the beginning of each session, participants were seated at randomly selected
networked computers, and completed an interactive set of instructions (identical to DJ) to
make sure they could identify correctly the payoff for each task type. At the start of each

1We conduct separate power analyses for each of the results we are trying to replicate. The minimum
requirement for 90% power is 36 for arithmetic problems, 191 for risk tasks, and 186 for intertemporal tasks.
Hence we recruited approximately 200 participants.

2Session 1’s data (16 subjects) was dropped due to a significant, unintended time lag during the experi-
ment, and 4 other participants were dropped for incomplete data.

3The program was developed in z-tree (Fischbacher, 2007).
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trial, either a 1-digit (low cognitive load mode) or 8-digit number (high cognitive load mode)
appeared on the screen for 3 seconds.4 After each arithmetic, risk, time, or anchoring task,
participants were asked to recall the number they saw. Participants earned $22 for correctly
recalling the number, an amount DJ intentionally set much higher than what could be earned
from a decision making task so that participants would prioritize the working memory task.

As in DJ Experiment 1, there were four categories of individual tasks: (1) arithmetic
problems, (2) choices involving risk, (3) choices involving intertemporal substitution, and (4)
choices with anchoring effects. Stimuli for each trial were generated by a random method
described in DJ Table 2. The arithmetic problems included both addition and multiplication
of a one-digit and a two-digit number, and the payoff for the correct answer was $12. The
risk task involved gambles in either the gain or loss domain where the payoff depended on the
outcome of the participants’ choices. Each trial in the risk task required choosing between a
sure payment on the left and a risky gamble on the right. In the gain domain, participants
were given an initial endowment of $2, then chose between a sure gain of s and a 50/50
gamble of receiving 2s + 2 or 0; in the loss domain, participants received an endowment of
2s + 4, and chose between a sure loss of s + 2 and a 50/50 gamble of losing 2s + 2 or 0,
where s was an integer drawn from ∼ U{8, 15}. Intertemporal choices were hypothetical,
and each choice earned a flat payoff of $12. In the intertemporal choice task, participants
chose either a smaller sooner option of $100 at time T on the left or a larger later option
$F ∈ U{105, 110, 115, 125} at time T + t on the right. T was equally likely to be today, in
one week, or in one month, and t was equally likely to be one day, one week, or one month.
When T = one month, then t could only be one day or one week. For the anchoring effect
task, participants first picked a number between 20 and 80. On the next screen, this number
was displayed while participants counted how many S’s were in a 10x10 matrix of 5’s and
S’s. If the participant’s count was within five of the accurate count, they earned $12.

Since time pressure increases the difficulty of tasks in involving working memory (Matthews
and Campbell, 2010), all phases of each trial of the experiment were timed. Participants
saw the one- or eight-digit number they were asked to remember for three seconds prior to
completing the arithmetic or decision task and had nine seconds to enter the remembered
number afterwards. They were allowed ten seconds to solve addition or multiplication tasks
and eight seconds for the risk or intertemporal choice problems. In the anchoring task, par-
ticipants were allowed eight seconds to enter a number, followed by ten seconds to count and
input the number of S’s. If time expired before the participant submitted required inputs,

4For the one-digit memorization task, participants could potentially “cheat” by placing one of their fingers
at the keyboard, which would further reduce cognitive load. This was possible both for our study and DJ.
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they earned $0 for that trial. Following each trial participants reviewed the outcome for five
seconds before the next trial began.

Once the tasks from DJ’s Experiment 1 concluded, our participants completed two addi-
tional tasks: a working memory task and an exit survey. The working memory task contained
both forward and backward digit-span subtasks. In the digit-span task, participants were
presented with a series of digits one at a time on the screen. In the forward digit-span task,
participants entered the digits in the order in which they appeared, whereas in the backward
digit-span task they were entered in the reverse order of appearance. The backward digit-
span task is one of the most prevalent task in evaluating working memory capacity (Ramsay
and Reynolds, 1995), which is an important component of general intelligence, and is in-
cluded in the Wechsler Adult Intelligence Scale - Fourth Edition (WAIS-IV; Wechsler, 2008).
The exit survey included the Cognitive Reflection Test (Frederick, 2005), a demographic
questionnaire, and selected questions from the Global Preferences Survey (Falk et al., 2018).

3 Summary Statistics and Preregistered Replication

In the pre-registration document, we defined a successful replication as: “. . . a statistically
significant effect (p-value less than 0.05) for math accuracy, risky choice, and intertemporal
choice following Table 4 column 1a, 2a and 3a in the original paper.” Because they provide
a useful way to compare data sets, however, section 3.1 reproduces Table 3 in DJ, where
we report summary statistics on task performance under high and low cognitive load for
both UA and VT samples. The results of the preregistered hypotheses are found in section
3.2. Since DJ did not find an effect of cognitive load on anchoring in their Experiment 1
we did not preregister an anchoring hypothesis and will not discuss these results extensively.
Anchoring results are, however, included in our tables for completeness.

3.1 Summary Statistics

We begin by looking at participants’ performance on the digit memorization task (Table
1). Similar to the UA sample, the VT sample had more trouble remembering the 8-digit
number than the 1 digit number (rank-sum test p<0.001). Comparing the performance
across samples, however, shows that while the UA participants accurately recalled 43.3%
of the numbers, VT participants recalled only 35.8%, a significant decrease (rank-sum test
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p-values: low 0.006, high 0.000). So while participants from both samples perform worse
as cognitive load increases, the VT participants were somewhat worse at the memorization
task overall.

Table 1. Summary statistics (Table 3 in DJ)

Low High Low vs. High Diff-in-Diff
(A) UA (B) VT (C) P (D) UA (E) VT (F) P (G) UA (H) VT (I) mean (J) P

Digit memorization 96.3% 95.3% 0.006 43.3% 35.8% 0.000 0.000 0.000 -0.009 0.000
4480 7920 4480 7920

Correct addition 97.8% 97.7% 0.951 96.9% 94.6% 0.105 0.5307 0.000 -0.003 0.191
312 955 294 986

Correct multiplication 71.6% 73.9% 0.328 55.9% 59.4% 0.189 0.000 0.000 0.002 0.738
634 854 639 794

Risky choice (gains) 59.5% 61.4% 0.444 52.7% 56.8% 0.099 0.013 0.040 0.003 0.531
662 933 662 1012

Risky choice (loss) 45.7% 44.6% 0.663 43.9% 48.3% 0.088 0.517 0.111 0.008 0.132
588 946 640 951

Early option 35.8% 36.6% 0.792 31.6% 33.7% 0.451 0.175 0.244 0.002 0.737
(today vs. future) 452 735 459 736
Early option 30.2% 28.9% 0.507 25.9% 29.1% 0.107 0.050 0.887 0.007 0.107
(later vs. future) 871 1316 815 1277
S-Count within 50.1% 39.9% 0.000 40.9% 31.6% 0.000 0.000 0.000 0.001 0.740
anchoring range 799 1690 876 1754

Note: Numbers in percentage on top, and # of responses on bottom. Column C lists p-values of UA and VT comparison for low cognitive
load condition, and column F lists p-values of UA and VT comparison for high cognitive load condition. Column G lists p-values of low and
high cognitive load comparison for UA, and column H lists p-values of low and high cognitive load comparison for VT. P-values in columns
C, F, G, H are obtained using Wilcoxon rank-sum test. Bolded p-values are those who survive Bonferroni correction at α = 0.05 (adjusted
α = 0.00125). Column I lists estimations for difference-in-difference treatment effect, and column J lists p-values. UA results are reproduced
using DJ’s data.

Task performance between the samples looks similar in the risk and impatience tasks, but
shows some differences in the anchoring task (Table 1 Columns C and F). The UA sample
has significantly higher accuracy in the anchoring task, for both the low (50.1% vs. 39.9%,
rank-sum test p<0.001) and high (40.9% vs. 31.6%, rank-sum test p<0.001) cognitive load
trials. Overall, the VT sample looks similar to the UA sample in the arithmetic, risk, and
intertemporal choice tasks.

There are, however, some between-sample differences in the statistics on the effect of
increased cognitive load. While the VT sample performs better in the addition task un-
der low cognitive load (rank-sum test p<0.001), the UA participants were not significantly
affected (p=0.105). UA participants are less patient under low cognitive load in the later
vs. future intertemporal choice task (rank-sum test p=0.050), but there is no difference in
the VT sample (p=0.886). Regression analyses (Table A2) are mostly consistent with these
results. Overall, our initial look at summary statistics suggests that the samples are largely
comparable.

We next explore whether there are significant differences in the effect of cognitive load on
the two samples by comparing the difference in performance on each task (Table 1, columns
I and J). We find that the only significant difference between the two samples is in success
at digit memorization, where the UA participants outperform those from VT (difference-in-
difference estimation, mean=-0.009, p<0.001).
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3.2 Results of the Preregistered Hypotheses

We now turn to our preregistered hypotheses, which were evaluated using DJ’s data anal-
ysis scripts. We report analyses of both the UA and VT data in Table 2. As hypothesized,
we can successfully replicate the result that cognitive load affects performance on arithmetic
tasks (Column A). On the other hand, while UA participants’ choices were both more risk
averse and more patient when cognitive load increased, we find neither of these results in
the VT data (Columns D and G). A strict interpretation of these results is that our planned
replication failed. In the remainder of the paper, we explore the reasons for this failure to
replicate.

Table 2. Effect of cognitive load manipulation on behavior in both samples.

UA Sample

Correct at arithmetic Risky choice chosen Earlier option chosen Guess for Anchoring task

A (All) B (-) C (+) D (All) E (-) F (+) G (All) H (-) I (+) J (All) K (-) L (+)

8-Digit number -0.122*** 0.033 -0.262*** -0.054** -0.035 -0.071** -0.041** -0.057** -0.027 0.159 2.391 -2.356
(0.023) (0.022) (0.026) (0.024) (0.036) (0.032) (0.018) (0.026) (0.026) (2.293) (3.311) (3.204)

Anchor 0.068* 0.050 0.094*
(0.037) (0.056) (0.048)

Anchor x 8 digit 0.034 0.006 0.065
(0.050) (0.070) (0.070)

Number of S’s 0.708*** 0.688*** 0.729***
(0.025) (0.040) (0.029)

1-Digit average 0.802 0.786 0.817 0.530 0.560 0.505 0.321 0.263 0.377
Subject fixed Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
R2 0.232 0.289 0.220 0.306 0.317 0.289 0.315 0.318 0.289 0.675 0.662 0.689
Observations 1879 882 997 2552 1213 1339 2597 1270 1327 1675 824 851

VT Sample

Correct at arithmetic Risky choice chosen Earlier option chosen Guess for Anchoring task

A (All) B (-) C (+) D (All) E (-) F (+) G (All) H (-) I (+) J (All) K (-) L (+)

8-Digit number -0.069*** 0.021* -0.160*** -0.005 -0.019 0.008 -0.007 0.004 -0.018 -3.573* -3.060 -3.926
(0.012) (0.011) (0.016) (0.016) (0.024) (0.022) (0.016) (0.025) (0.021) (2.059) (2.820) (3.047)

Anchor 0.089*** 0.099** 0.082*
(0.031) (0.043) (0.044)

Anchor x 8 digit 0.062 0.047 0.074
(0.043) (0.060) (0.062)

Number of S’s 0.616*** 0.653*** 0.578***
(0.023) (0.034) (0.029)

1-Digit average 0.865 0.832 0.898 0.530 0.524 0.534 0.316 0.338 0.296
Subject fixed Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
R2 0.157 0.188 0.153 0.310 0.299 0.321 0.310 0.294 0.324 0.568 0.593 0.544
Observations 3589 1800 1789 3842 1870 1972 4064 2003 2061 3444 1703 1741

Note: Dependent variables vary and are listed at the top of each column. OLS regression, standard errors clustered by participant. (All) for
the whole sample, (-) for cognitive load insensitive individuals, and (+) for cognitive load sensitive individuals. The row labeled “1-Digit av-
erage” corresponds to the mean performance of the 1-digit treatment group. For the VT sample, we follow DJ’s method to median split the
sample. Using this method, we can fully recover results for the UA sample. UA results are reproduced using DJ’s data.

* p < 0.1, ** p < 0.05, *** p < 0.01.
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4 Median Split Analysis

One of the interesting findings in DJ is that some participants are more affected by
cognitive load across a range of tasks. In their analysis, DJ calculate the difference in success
at multiplication between the low and high cognitive load conditions, then conduct a median
split of the data. Participants whose scores changed the most are referred to as “sensitive” to
cognitive load, with the least affected called “insensitive.” DJ find that sensitive participants
are 7.1% less likely to choose the risky option, a result consistent with previous findings
that cognitive ability and risk preferences are related (Dohmen et al., 2010). They also find
that insensitive individuals become more patient, a result they explore further in a later
experiment. We next conduct an exploratory analysis of whether sensitive VT participants
become more risk averse under high cognitive load.

4.1 Median Split Analysis of VT Data

We first divide the VT sample by performing a median split of the sample based on the
VT participants’ multiplication task performance (as in DJ). The participants whose choices
changed the most in the multiplication task when the cognitive load increased are sensitive
(+), and the others are not sensitive (-), see Table 2. Our median split perfectly mimics
DJ’s method (correlation Spearman’s rho = 1, p-value < 0.001).

The results of this exercise are mixed for the VT sample. As in DJ, sensitive subjects
perform worse in both types of arithmetic problems with high cognitive load (p<0.001).
This demonstrates that the median split successfully separates the individuals with different
cognitive load tolerance. Unlike the UA sample, however, we do not find that cognitive load
impacts risk preference (sensitive p=0.727, insensitive p=0.448) or time preference (sensitive
p=0.392, insensitive p=0.885), for either of the sensitivity classifications. This (null) result
reinforces the results of section 3 that the cognitive load manipulation did not affect the VT
participants’ overall decision making in the risk or time preference tasks.

An assessment of the success of the replication should not rely solely on p-values, but
also on the research prior and the statistical power of the experiment (Maniadis et al., 2017).
We use a Bayesian replication test (Verhagen and Wagenmakers, 2014, henceforth VW) to
quantify the evidence that the data provide for replication success or failure. The analysis
compares two competing hypotheses for the data from the replication study: an idealized
proponent’s view, which assumes that the effect of cognitive load on task performance is
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distributed according to the results from DJ (VW call this the proponent’s replication hy-
pothesis, Hr); and a skeptical one, which assumes that the effect of cognitive load on task
performance is equal to 0 (H0). We conduct 12 replication tests, matching the 12 regression
results in Table 2 for the effect of the 8-digit number on performance in the arithmetic,
risk, time, and anchoring tasks, overall and for the cognitive load insensitive and sensitive
groups. The input and output of the test is listed in Table A1, and the test results are
visualized in Figure A3. We use the t-statistics for the coefficients on the 8-Digit number
and the numbers of observations from the UA and VT samples to compute the Bayes factor(
BFr0 =

p(Yrep|Hr)
p(Yrep|H0)

)
, a ratio that measures the relative likelihood of the replication data Yrep

to occur under Hr (the hypothesis that the effect sizes from the VT sample are equal to the
ones from the UA sample) versus H0 (the hypothesis that the effect sizes of the VT sample
are equal to 0). Following VW, for the idealized proponent’s hypothesis Hr, the posterior
distribution of the effect size from the UA sample is used as the prior for computing the
likelihood. A typical rule of thumb is that Bayes factors greater than 3 constitute a suc-
cessful replication (Rouder et al., 2017). Focusing on our preregistered hypotheses for the
cognitive load sensitive group, the Bayes factor BFr0 is equal to 2.86e+18, 0.105, 0.874, and
1.3 for the Arithmetic, Risk, Time, and Anchoring tasks, respectively (Table A1, Figure A3).
Again, these analyses are consistent with the conclusion that the VT experiment replicates
the result that cognitive load affects arithmetic task performance, but not risk and time
preferences or anchoring.

4.2 Median Split Analysis Using the DJ Sample Median

Our failure to reproduce the sensitivity result could be due to a difference in the median
of the absolute performance drop in multiplication between the two samples (UA median:
-0.17, VT median: -0.07). In this section, we attempt to reproduce Table 4 in DJ using the
median of the UA data to split the VT sample.

This creates an unbalanced sample for cognitive load insensitive and cognitive load sen-
sitive groups: more VT subjects are cognitive load insensitive (2013 insensitive vs. 1576
sensitive observations in arithmetic problems). As shown in Table 3, we successfully parti-
tion the VT sample so that cognitive load sensitive individuals perform worse under high
cognitive load in arithmetic task (p<0.001). The results for risk (sensitive p=0.931, insensi-
tive p=0.628) and time preferences (sensitive p=0.562, insensitive p=0.902) are still similar
to what we found in section 4.1.
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Table 3. Effect of cognitive load in VT sample using DJ median to perform median split.

VT Sample

Correct at arithmetic Risky choice chosen Earlier option chosen Guess for Anchoring task

A (All) B (-) C (+) D (All) E (-) F (+) G (All) H (-) I (+) J (All) K (-) L (+)

8-Digit number -0.069*** 0.010 -0.171*** -0.005 -0.011 0.002 -0.007 -0.003 -0.012 -3.573* -2.420 -4.674
(0.012) (0.011) (0.018) (0.016) (0.023) (0.023) (0.016) (0.024) (0.021) (2.059) (2.592) (3.377)

Anchor 0.089*** 0.093** 0.085*
(0.031) (0.040) (0.048)

Anchor x 8 digit 0.062 0.033 0.090
(0.043) (0.056) (0.067)

Number of S’s 0.616*** 0.649*** 0.573***
(0.023) (0.032) (0.031)

1-Digit average 0.865 0.832 0.907 0.530 0.524 0.536 0.316 0.333 0.297
Subject fixed Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
R2 0.157 0.187 0.150 0.310 0.299 0.323 0.310 0.291 0.333 0.568 0.593 0.539
Observations 3589 2013 1576 3842 2049 1793 4064 2210 1854 3444 1866 1578

Note: Dependent variables vary and are listed at the top of each column. OLS regression, standard errors clustered by participant. (All) for
the whole sample, (-) for cognitive load insensitive individuals, and (+) for cognitive load sensitive individuals. The row labeled “1-Digit av-
erage” corresponds to the mean performance of the 1-digit treatment group. This provides the baseline performance in each task. For the VT
sample, we follow DJ’s data, and use the exact cutoff point to median split the sample. Using this cutoff point, we again can fully recover
results for the UA sample. UA results are reproduced using DJ’s data.

* p < 0.1, ** p < 0.05, *** p < 0.01.

We next plot the density and histogram for the absolute performance drop in the multi-
plication task (Figure 1) to explore the effect of the median split on the two samples. Even
though the sample means are not different (two-sided t-test p=0.945), the sample distribu-
tions are marginally different (Epps-Singleton test p=0.071), and the standard deviation for
the UA sample is significantly smaller than that for the VT sample (Variance comparison
test p=0.010). It is possible that we observe inconsistent results in Table 2 due to differ-
ences in the absolute performance drop in the multiplication task. In the next subsection
we attempt to identify the basis for this inconsistency by considering different median split
strategies.

median median

0
.5

1
1.

5
2
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Figure 1. Histogram of Absolute Performance Drop in the Multiplication Task
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4.3 Alternate Median Split Analyses

We conjectured that one of the reasons that we failed to reproduce the risk results is
that the effect of cognitive load may differ in the gain and loss domains. Table 4 returns
to the median split strategy from Section 4.1 that follows DJ but divides participants’ risk
decisions into gains and losses. In the gain domain, we find that UA but not VT participants
are sensitive to cognitive load. In the loss domain we find that neither sample shows an
effect of cognitive load. It is possible that participants from different subject pools may have
different perceptions of the loss domain. While some participants might perceive the loss
condition as intended, for others the choices in the loss condition might still represent gains
due to the “house money effect,” in which all tasks represent gains relative to the wealth
with which participants began the experiment (Cárdenas et al., 2014).

Table 4. Effect of cognitive load on risky gains and losses

UA Risky Gain VT Risky Gain UA Risky Loss VT Risky Loss

A (All) B (Not) C (Sens) D (All) E (Not) F (Sens) G (All) H (Not) I (Sens) J (All) K (Not) L (Sens)
coef./se coef./se coef./se coef./se coef./se coef./se coef./se coef./se coef./se coef./se coef./se coef./se

8-Digit number -0.048 0.019 -0.107*** -0.025 -0.027 -0.023 -0.044 -0.071 -0.018 0.002 -0.020 0.021
(0.031) (0.048) (0.040) (0.021) (0.031) (0.029) (0.035) (0.051) (0.049) (0.023) (0.033) (0.032)

Observations 1324 626 698 1945 957 988 1228 587 641 1897 913 984
Subject fixed Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
R2 0.413 0.392 0.431 0.409 0.386 0.425 0.411 0.417 0.400 0.439 0.408 0.458

Note: Dependent variable is the percent of risky choices chosen. OLS regression, standard errors clustered by participant.
* p < 0.1, ** p < 0.05, *** p < 0.01.

We next take advantage of the additional data we collected for the VT sample. We
perform three separate median splits of the data based on performance in the CRT, the
backward digit span task and the forward digit span task. Since these are all measures of
cognitive ability, we conjectured that scores on these tasks might interact with the cognitive
load manipulation to produce changes in risk-taking. The CRT is highly correlated with
cognitive ability in general (Pennycook and Ross, 2016) and working memory (Stupple et al.,
2013) in particular. While participant scores on these three measures are correlated with
each other, none are significantly correlated with DJ’s sensitivity measure.5

For the CRT, the VT sample is partitioned into the bad group (participants who answered
all 3 CRT questions wrong) and good group (median of CRT score was 1). For each of the

5Insignificant correlation between cognitive load sensitivity and CRT (spearman’s rho=-0.112, p=0.116),
insignificant correlation between cognitive load sensitivity and digit span backward (spearman’s rho=-0.096,
p=0.178), insignificant correlation between cognitive load sensitivity and digit span forward (spearman’s
rho=0.061, p=0.392). Significant correlation between CRT and digit span backward (spearman’s rho=0.328,
p<0.001), significant correlation between CRT and digit span forward (spearman’s rho=0.130, p=0.069),
significant correlation between digit span backward and digit span forward (spearman’s rho=0.337, p<0.001).
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memory task results, the samples are also sorted into the bad group, who remembered fewer
digits than the median, and the good group (median in backward digit span task = 9, median
in forward digit span task=11). The results on the frequency of selecting the risky option
for each of these are found in Table 5. We find no evidence that performance on any of these
tasks is associated with participants’ choices.

Table 5. Alternative median split methods on risk task.

VT Sample

CRT Score Digit Span Backward Digit Span Forward

A (All) B (Bad) C (Good) D (All) E (Bad) F (Good) G (All) H (Bad) I (Good)

8-Digit number -0.005 -0.007 -0.003 -0.005 -0.026 0.009 -0.005 -0.010 -0.001
(0.016) (0.023) (0.022) (0.016) (0.028) (0.019) (0.016) (0.026) (0.020)

Observations 3842 1718 2124 3842 1575 2267 3842 1848 1994
Subject fixed Yes Yes Yes Yes Yes Yes Yes Yes Yes
R2 0.310 0.291 0.318 0.310 0.336 0.292 0.310 0.287 0.328

Note: Dependent variable is the percent of risky choices chosen. OLS regression, standard errors clustered by participant. CRT Score is de-
noted as good if answers at least one question correctly out of three (median of CRT score is 1). Digit Span Backward/Forward is denoted as
good if number of correct recalls is greater or equal to the median performance (median of backward is 9, median of forward is 11).

* p < 0.1, ** p < 0.05, *** p < 0.01.

5 Exploring subject pool differences

We sought an explanation for why we were unable to replicate many of DJ’s results despite
using their experiment code, procedures and data analysis scripts. One plausible candidate
was that there are differences, perhaps in cognitive ability, between the participants in the
two experiments. Unfortunately, a formal test is not possible as data on cognitive ability is
not available for the DJ sample.

As an exploratory analysis, we looked for evidence of differences in the undergraduate
student populations, to which most participants belong. To do this, we compared admissions
statistics (Common Data Set (CDS) Initiative) between the two universities (University of
Arkansas, 2019; Virginia Tech, 2019), focusing on CDS-C (First-Time, First-Year (Freshmen)
Admission).6 More VT first-year enrolled students had high school grade point averages of
3.75 and higher (UA 44.94%, VT 78.32%) with mean high school grade point averages of
3.98 for VT and 3.67 for UA. In addition, on average more VT students rank in the top
ten percent of their high school graduating class (UA 25.65%, VT 39.16%), and more UA
students rank bottom half of their high school graduating class (UA 14.83%, VT 2.28%).
Since the experimental tasks are numerical in nature, we next looked at standardized test

6CDS data is extracted from the university website. Since VT and UA experiments were run in different
years, we use 5 years CDS during the data collection period (from 2014-2015 to 2018-2019).
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scores to explore differences in quantitative ability.7 Over the last 5 years, 21.75% VT
students scored higher than 700 in SAT Math compared to 6.95% for UA students (Figure
A4(a)). For students who took the ACT, 31.30% VT students score above 30 in Math,
compared to 12.19% for UA students (Figure A4(b)).8 Based on the above descriptive
differences in the two sample pools, VT appear to be slightly better on average academically,
which could translate into a difference in cognitive ability that makes them less affected by
the experiment’s cognitive load treatment. On the other hand, without collecting new data
there is no way to determine if this difference is sufficient to explain our results.

We next looked within the VT sample in the hope of finding some evidence that par-
ticipant differences influenced the effects of cognitive load. We created two sub-groups of
participants from within the VT sample: the first reported having majors in our College
of Engineering (Eng) and the second reported having majors in our College of Liberal Arts
and Human Sciences (LAHS). Note that in the current VT university organization, majors
such as mathematics, statistics, physics and economics are in neither of these colleges. VT
engineering majors are very math intensive, requiring two full years of college math at the
calculus level and beyond. On the other hand, most LAHS majors are not required to take
calculus. Table 6 presents task performance with these subsets of the VT data. We find sig-
nificant performance differences between the two groups in the mathematics and risk tasks.
While intriguing, these results are not sufficient to establish subject pool differences as the
cause of our replication failure.

7VT started to collect ACT scores from 2017-2018. Students have different preferences for submitting
exam scores. For UA, 25% enrolled students submitted SAT scores, and 92% submitted ACT scores. For
VT, 87% enrolled students submitted SAT scores, and 38% submitted ACT scores.

8VT students also score higher in SAT Critical Reading, ACT Composite, and ACT English, when
comparing percent of students (Figure A4).
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Table 6. Task Performance Differences in College Majors (VT Sample)

Low High Low vs. High Diff-in-Diff
(A) LAHS (B) Eng (C) P (D) LAHS (E) Eng (F) P (G) LAHS (H) Eng (I) mean (J) P

Digit memorization 95.4% 95.4% 0.927 31.6% 45.1% 0.000 0.000 0.000 -0.019 0.000
1160 1680 1160 1680

Correct addition 97.0% 99.1% 0.139 92.1% 96.7% 0.047 0.075 0.087 -0.004 0.356
132 219 151 215

Correct multiplication 74.6% 85.1% 0.021 54.87% 78.2% 0.000 0.002 0.088 -0.018 0.068
122 194 113 174

Risky choice (gains) 62.8% 54.2% 0.114 60.7% 49.3% 0.033 0.712 0.329 0.004 0.713
145 192 150 207

Risky choice (loss) 45.9% 32.3% 0.009 43.5% 39.2% 0.419 0.685 0.161 -0.013 0.221
157 201 147 189

Early option 44.6% 35.6% 0.158 44.1% 34.9% 0.119 0.952 0.892 0.000 0.970
(today vs. future) 101 146 111 172
Early option 32.6% 34.6% 0.651 34.9% 26.6% 0.056 0.643 0.041 0.015 0.098
(later vs. future) 190 280 195 274
S-Count within 36.5% 40.9% 0.275 28.8% 33.3% 0.239 0.068 0.035 -0.000 0.978
anchoring range 252 362 243 369

Note: Numbers in percentage on top, and # of responses on bottom. Eng stands for students major in engineering, and LAHS stands for stu-
dents major in Liberal Arts and Human Sciences. Column C lists p-values of Eng and LAHS comparison for low cognitive load condition, and
column F lists p-values of Eng and LAHS comparison for high cognitive load. Column G lists p-values of low and high cognitive load compar-
ison for LAHS, and column H lists p-values of low and high cognitive load comparison for Eng. P-values in columns C, F, G, H are obtained
using Wilcoxon rank-sum test. Column I lists estimations for difference-in-difference treatment effect, and column J lists p-values. Bolded
p-values are those who survive Bonferroni correction at α = 0.05 (adjusted α = 0.00125).

6 Conclusion

We conduct a preregistered replication of Deck and Jahedi (2015) Experiment 1 which
explores the effect of cognitive load on one’s ability to do arithmetic and make economic
decisions. In our sample we are able to replicate the effect of high cognitive load on partici-
pants’ ability to correctly do multiplication problems, which serves as a manipulation check
for the digit memorization procedure. Our data fails to confirm the other two preregistered
hypotheses about the effect of cognitive load on risky choice and impatience.

In a sense, a failure to fully replicate DJ’s cognitive load results is not surprising. In fact,
the original authors present a nice summary of previous results on cognitive load which shows
they are often mixed. Kessler and Meier (2014), for example, fail to replicate their own result
on how cognitive load affects charitable giving, attributing the replication failure to the order
in which the cognitive load task occurred in a series of tasks. While this explanation does not
apply to DJ’s experiments, it suggests that cognitive load manipulations may be relatively
more sensitive to details of the experimental design than other experimental treatments. In
general, experimenters who wish to maximize the chance of successful replication should,
therefore, use the same instructions, procedures, task order and presentation, and subject
pool. By using DJ’s experiment code, we have done our best to address the first three
concerns.

We made several attempts to identify whether differences in the participant pool are
responsible for our failure to replicate. Since DJ did not report demographic data on partic-
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ipants, we instead review university admissions data and program rankings and find some
significant differences in admissions statistics between the student populations at UA and
VT. We hypothesized that differences in cognitive ability between our subject pools might
provide some insight into the differences we observe. If the differences were great enough, for
example, we might expect the participants from the school with higher admissions standards
to be less risk averse, in keeping with previous work on the relationship between numeracy
and risk aversion (Dohmen et al., 2010; Benjamin et al., 2013, e.g.). That VT students were
generally somewhat (but not significantly) more willing to take risks suggests a path for
future research.

Distributional analyses might have helped to determine whether these differences hold
for subsamples of the subject populations. DJ’s median split analysis reveals that, among
the UA participants, cognitive load changes risk and impatience decision making only for
those who are found to be sensitive to its effects based on multiplication accuracy. However,
this result does not hold for VT participants. On the other hand, looking at the summary
statistics for the risk task in the loss domain, for example, there is some evidence that
increasing cognitive load made VT students slightly more willing to choose risky gambles,
whereas the UA students’ behavior was almost unchanged. This is consistent with the theory
that cognitive load amplifies the reflection effect, wherein people are risk averse in the gain
domain and risk seeking in the loss domain. Our additional explorations involved splitting
the VT subject pool using the DJ median split point and scores on both memory tasks and
the Cognitive Reflection Test. We were ultimately unsuccessful in finding a way to split the
VT sample to recover the UA sensitivity result.

The most notable difference between the subject pools is that the UA participants per-
formed better than VT participants on the digit memorization task in both the high and
low cognitive load treatments. This could be evidence that UA participants have better
memories. It is also possible that UA and VT students used different multitasking strate-
gies with UA students giving higher priority to the memorization task in order to increase
the likelihood of earning $22 for correct memorization. Therefore, future research should
consider the possibility that people strategically multitask to avoid cognitive resource ex-
haustion, and might try to identify the extent to which memorization tasks deplete cognitive
resources. Also, future research into whether participant differences matter might involve
repeating this experiment at two universities with different student populations and col-
lecting subject level data on numeracy, memory, the Cognitive Reflection Test and relevant
socioeconomic data.
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Recently, Deck et al. (2021) examined the robustness of the effect of different cognitive
load manipulations on task performance and decision-making in math problems, lottery
tasks, logic puzzles, and distributional (sharing) decisions in a study conducted at Chapman
University. They found that cognitive load decreased performance on the math problems and
logic puzzles, increased risk aversion in the lottery tasks, and had no effect on distributional
choices. In this study, as in DJ, subjects for whom number memorization had the most
detrimental effect on math performance exhibit a greater increase in risk aversion under
cognitive load. In addition, subjects who perform well on the Cognitive Reflection Test are
the most affected by cognitive load. The authors argue that participants who exert cognitive
effort (as opposed to those who are more impulsive) are more susceptible to the effects of
cognitive load on task performance. As noted above, we also measured performance on the
CRT, but did not find a relationship between CRT performance and the effect of cognitive
load on risk-taking. Understanding why these results vary across subject populations will
(of course) require more studies, both original and replications.

In summary, our results add to the complex literature on the relationship between work-
ing memory load and economic decision making. Our replication study not only generates
an additional set of data testing the existing paradigm but also explores how subject pool
differences might influence the effect of cognitive load manipulations. The inconsistent re-
sults from the VT and UA samples suggest that researchers should pay special attention to
strategic multitasking under high cognitive load and to individual differences in cognitive
constraints. Cognitive load and cognitive ability clearly play a role in economic decision-
making; however, many questions remain. In particular, future work on cognitive load and
risk-taking should seriously consider how to separate increased noise from changes in prefer-
ences. Our work also highlights that replication studies, though seemingly straightforward,
still require judgment in design and interpretation. We do observe a relatively strong effect
of cognitive load on anchoring, using DJ’s “within-range” approach. While a strict interpre-
tation is that we failed to replicate DJ’s results, our preferred conclusion is more nuanced.
Some of our experiment results are consistent with DJ’s dual-process motivation, and more
research is needed to understand how people allocate attention and effort under cognitive
load. We hope that our study motivates future research probing the fundamental mecha-
nisms that govern the effect of cognitive load and the allocation of cognitive resources during
economic decision-making.
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Appendices

Table A1. Bayesian Replication Test Results

Correct at arithmetic Risky choice chosen Earlier option chosen Guess for Anchoring task

A (All) B (-) C (+) D (All) E (-) F (+) G (All) H (-) I (+) J (All) K (-) L (+)

torg -5.43 1.48 -10.2 -2.28 -0.998 -2.21 -2.28 -2.22 -1.03 0.0694 0.722 -0.736
Norg 1879 882 997 2552 1213 1339 2597 1270 1327 1675 824 851
trep -5.76 1.82 -9.69 -0.312 -0.762 0.35 -0.444 0.145 -0.861 -1.74 -1.09 -1.29
Nrep 3589 1800 1789 3842 1870 1972 4064 2003 2061 3444 1703 1741
p
(
Yrep|Hr

)
0.139 0.225 0.0147 0.0739 0.239 0.0395 0.0804 0.0468 0.241 0.131 0.109 0.226

p
(
Yrep|H0

)
2.62e-8 0.0756 5.11e-21 0.38 0.298 0.375 0.362 0.395 0.275 0.0886 0.221 0.174

Bayes Factor 5.31e+6 2.98 2.87e+18 0.194 0.802 0.105 0.222 0.119 0.875 1.48 0.493 1.3

Note: t-statistics and number of observations from the original study and the replication study (torg, Norg, trep, Nrep) are used as inputs of
the Bayesian replication test. The Bayes Factor BFr0 is the output of the test, which is the ratio of the likelihood of the replication data Yrep

under Hr (p
(
Yrep|Hr

)
) to the likelihood of the the replication data Yrep to occur under H0 (p

(
Yrep|H0

)
). A typical rule of thumb is that

Bayes factors greater than 3 constitute a successful replication (Rouder et al., 2017).

Table A2. The effect of cognitive load on sub-task.

UA Sample

Correct at arithmetic Risky choice chosen Earlier option chosen Within range

Addition Multiplication Risk (gains) Risk (losses) Now vs. future Later vs. future Anchoring

8-Digit number -0.008 -0.157*** -0.068** -0.018 -0.043 -0.043* -0.092***
(0.019) (0.031) (0.033) (0.035) (0.029) (0.022) (0.027)

Constant 0.978*** 0.716*** 0.595*** 0.457*** 0.358*** 0.302*** 0.501***
(0.016) (0.028) (0.032) (0.036) (0.032) (0.026) (0.022)

Observations 606 1273 1324 1228 911 1686 1675
R2 0.001 0.027 0.005 0.000 0.002 0.002 0.009

VT Sample

Correct at arithmetic Risky choice chosen Earlier option chosen Within range

Addition Multiplication Risk (gains) Risk (losses) Now vs. future Later vs. future Anchoring

8-Digit number -0.031*** -0.146*** -0.046* 0.037 -0.029 0.003 -0.082***
(0.009) (0.023) (0.023) (0.025) (0.025) (0.021) (0.019)

Constant 0.977*** 0.739*** 0.614*** 0.446*** 0.366*** 0.289*** 0.399***
(0.005) (0.023) (0.025) (0.027) (0.026) (0.021) (0.017)

Observations 1941 1648 1945 1897 1471 2593 3444
R2 0.006 0.024 0.002 0.001 0.001 0.000 0.007

Note: Dependent variables vary and are listed at the top of each column. OLS regression, standard errors clustered by participant.
* p < 0.1, ** p < 0.05, *** p < 0.01.
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Table A3. Effect of cognitive load manipulation on math performance.

VT Sample

Cognitive Load Sensitivity CRT Score Digit Span Backward Digit Span Forward

A (All) B (-) C (+) D (All) E (Low) F (High) G (All) H (Bad) I (Good) J (All) K (Bad) L (Good)

8-Digit number -0.069*** 0.021* -0.160*** -0.069*** -0.097*** -0.049*** -0.069*** -0.096*** -0.053*** -0.069*** -0.038** -0.097***
(0.012) (0.011) (0.016) (0.012) (0.021) (0.014) (0.012) (0.023) (0.013) (0.012) (0.017) (0.016)

Observations 3589 1800 1789 3589 1526 2063 3589 1359 2230 3589 1679 1910
Subject fixed Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
R2 0.157 0.188 0.153 0.157 0.161 0.148 0.157 0.141 0.161 0.157 0.123 0.192

Note: Dependent variable is the accuracy of math problems. OLS regression, standard errors clustered by participant. Cognitive Load Sen-
sitivity defined same as in Table 2. CRT Score is denoted as high if answers at least one question correctly out of three. Digit Span Back-
ward/Forward is denoted as good if number of correct recalls is greater or equal to the median performance.

* p < 0.1, ** p < 0.05, *** p < 0.01.

Table A4. Effect of cognitive load manipulation on impatient choices.

VT Sample

Cognitive Load Sensitivity CRT Score Digit Span Backward Digit Span Forward

A (All) B (-) C (+) D (All) E (Low) F (High) G (All) H (Bad) I (Good) J (All) K (Bad) L (Good)

8-Digit number -0.007 0.004 -0.018 -0.007 -0.024 0.006 -0.007 -0.010 -0.005 -0.007 -0.023 0.007
(0.016) (0.025) (0.021) (0.016) (0.025) (0.021) (0.016) (0.026) (0.021) (0.016) (0.023) (0.023)

Observations 4064 2003 2061 4064 1802 2262 4064 1578 2486 4064 1926 2138
Subject fixed Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
R2 0.310 0.294 0.324 0.310 0.324 0.296 0.310 0.295 0.320 0.310 0.308 0.312

Note: Dependent variable is the percent of impatient choices. OLS regression, standard errors clustered by participant. Cognitive Load Sen-
sitivity defined same as in Table 2. CRT Score is denoted as high if answers at least one question correctly out of three. Digit Span Back-
ward/Forward is denoted as good if number of correct recalls is greater or equal to the median performance.

* p < 0.1, ** p < 0.05, *** p < 0.01.

Table A5. Effect of cognitive load manipulation on anchoring effect.

VT Sample

Cognitive Load Sensitivity CRT Score Digit Span Backward Digit Span Forward

A (All) B (-) C (+) D (All) E (Low) F (High) G (All) H (Bad) I (Good) J (All) K (Bad) L (Good)

8-Digit number -3.573* -3.060 -3.926 -3.573* -2.527 -3.900 -3.573* -4.866 -2.946 -3.573* -7.116** -0.411
(2.059) (2.820) (3.047) (2.059) (3.577) (2.408) (2.059) (3.705) (2.463) (2.059) (2.975) (2.773)

Anchor 0.089*** 0.099** 0.082* 0.089*** 0.136*** 0.064 0.089*** 0.048 0.112*** 0.089*** 0.096** 0.069
(0.031) (0.043) (0.044) (0.031) (0.045) (0.041) (0.031) (0.052) (0.038) (0.031) (0.043) (0.043)

Anchor x 8 digit 0.062 0.047 0.074 0.062 0.040 0.062 0.062 0.092 0.047 0.062 0.093 0.036
(0.043) (0.060) (0.062) (0.043) (0.072) (0.051) (0.043) (0.075) (0.053) (0.043) (0.061) (0.060)

Number of S’s 0.616*** 0.653*** 0.578*** 0.616*** 0.519*** 0.692*** 0.616*** 0.595*** 0.629*** 0.616*** 0.602*** 0.629***
(0.023) (0.034) (0.029) (0.023) (0.036) (0.026) (0.023) (0.033) (0.031) (0.023) (0.035) (0.029)

Observations 3444 1703 1741 3444 1479 1965 3444 1336 2108 3444 1658 1786
Subject fixed Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
R2 0.568 0.593 0.544 0.568 0.494 0.636 0.568 0.557 0.574 0.568 0.538 0.601

Note: Dependent variable is the guess for the anchoring task. OLS regression, standard errors clustered by participant. Cognitive Load Sen-
sitivity defined same as in Table 2. CRT Score is denoted as high if answers at least one question correctly out of three. Digit Span Back-
ward/Forward is denoted as good if number of correct recalls is greater or equal to the median performance.

* p < 0.1, ** p < 0.05, *** p < 0.01.
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Table A6. Effect of cognitive load manipulation on behavior with 3 groups

UA Sample

Correct at arithmetic Risky choice chosen Earlier option chosen Guess for Anchoring task

A (All) B (-) C (+) D (All) E (-) F (+) G (All) H (-) I (+) J (All) K (-) L (+)

8-Digit number -0.122*** 0.108*** -0.336*** -0.054** -0.065 -0.123*** -0.041** -0.043 -0.011 0.159 0.388 -2.743
(0.023) (0.036) (0.030) (0.024) (0.046) (0.037) (0.018) (0.029) (0.035) (2.293) (5.830) (5.243)

Anchor 0.068* 0.102 0.158**
(0.037) (0.115) (0.063)

Anchor x 8 digit 0.034 0.036 0.057
(0.050) (0.120) (0.104)

Number of S’s 0.708*** 0.703*** 0.702***
(0.025) (0.058) (0.044)

Observations 1879 416 583 2552 558 804 2597 607 789 1675 360 496
Subject fixed Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
R2 0.232 0.147 0.248 0.306 0.342 0.274 0.315 0.307 0.325 0.675 0.673 0.652

VT Sample

Correct at arithmetic Risky choice chosen Earlier option chosen Guess for Anchoring task

A (All) B (-) C (+) D (All) E (-) F (+) G (All) H (-) I (+) J (All) K (-) L (+)

8-Digit number -0.069*** 0.082*** -0.185*** -0.005 0.011 -0.015 -0.007 -0.007 -0.028 -3.573* -0.407 -6.505
(0.012) (0.019) (0.022) (0.016) (0.035) (0.026) (0.016) (0.035) (0.026) (2.059) (4.688) (3.959)

Anchor 0.089*** 0.097 0.077
(0.031) (0.080) (0.057)

Anchor x 8 digit 0.062 -0.005 0.126
(0.043) (0.095) (0.079)

Number of S’s 0.616*** 0.659*** 0.528***
(0.023) (0.042) (0.037)

Observations 3589 809 1177 3842 858 1375 4064 899 1386 3444 751 1190
Subject fixed Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
R2 0.157 0.099 0.136 0.310 0.284 0.341 0.310 0.363 0.337 0.568 0.608 0.510

Note: Dependent variables vary and are listed at the top of each column. OLS regression, standard errors clustered by participant. (All) for
the whole sample, (-) for 1/3 of the sample who are most cognitive load insensitive, and (+) for 1/3 of the sample who are most cognitive load
sensitive. For the VT sample, we follow DJ’s method to median split the sample.

* p < 0.1, ** p < 0.05, *** p < 0.01.
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Figure A1. The treatment effect of cognitive load across the four main tasks.
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(a) Arithmetic - Addition (b) Arithmetic - Multiplication

(c) Risk - Gain Domain (d) Risk - Loss Domain

(e) Impatience - Now vs. Future (f) Impatience - Later vs. Future

(g) Anchoring - Stage 1 (h) Anchoring - Stage 2

Figure A2. Experimental Screenshots for Individual Tasks
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(a) Arithmetic All (b) Arithmetic (-) (c) Arithmetic (+)

(d) Risk All (e) Risk (-) (f) Risk (+)

(g) Time All (h) Time (-) (i) Time (+)

(j) Anchor All (k) Anchor (-) (l) Anchor (+)

Figure A3. Bayesian Replication Test Result. The dotted lines represent the posterior from the original experiment,
which is used as prior for effect size in the replication tests. The solid lines represent the posterior distributions after the data
from the replication attempt are considered. The gray dots indicate the ordinates of this prior and posterior at the skeptic’s
null hypothesis that the effect size is zero.
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Figure A4. Average Standardized Examination Scores over 5 Years
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