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Abstract: We investigated the effect of large changes in financial incentives on the 10 

process of decision-making by measuring autonomic arousal and visual attention during 11 

an incentivized lottery-choice task. High real stakes were accompanied by increased risk 12 

aversion and physiological arousal, and by shifts in attention toward safer alternatives. 13 

These effects were manifested both within and between individuals. We find no evidence 14 

that heightened risk aversion is a mistake. To capture the interactions of arousal and 15 

attention with subjective value during evidence accumulation, we developed and fit a new 16 

arousal-modulated Attentional Drift Diffusion model (aADDM). Our computational model 17 

demonstrates that arousal amplifies discounting of high-valued outcomes when 18 

participants attended to low-valued outcomes. Arousal and attention, and their interaction, 19 

are integral to the process of decision-making under risk.  20 

One sentence summary: High stakes decrease risk taking, increase autonomic arousal, 21 

and shift attention, with arousal amplifying attentional biases.  22 
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Main Text: 23 

Important decisions, such as whether to run from a bear or to sell stocks during a market 24 

crash, involve high stakes and risk. In the most widely used models of decision making, 25 

choices are determined by stable preferences (1) and result from the cognitive evaluation 26 

of risk and reward. However, the decision environment itself may influence the choice 27 

process via changes in affect (2, 3). Emotional responses involve fluctuations in 28 

autonomic arousal, which in turn is associated with widespread changes in both 29 

physiology and cognition (4, 5). Arousal is linked to changes in both incentives (6, 7) and 30 

uncertainty (8–10) and is likely an adaptive response to changes in the distribution of 31 

rewards in the environment (8, 11).  32 

 33 

According to the Yerkes-Dodson relationship, task performance is optimized at 34 

intermediate levels of arousal (12, 4). In financial decision-making, high stakes typically 35 

lead to increased behavioral risk aversion (13, 14). Incentives increase mental effort and 36 

can improve performance in cognitive tasks (15). However, high stakes also lead to 37 

mistakes (16, 17). Hence, high-stakes risk aversion may be a rational response to 38 

increased incentives (18, 19) in resource-constrained decision-making (20), or it might be 39 

a decision bias (21) resulting from hyper-arousal (17, 22).  40 

 41 

Arousal is also linked to increased attention to salient or goal-relevant stimuli (23, 24). 42 

Both elevated arousal and attention to losses are associated with increased loss aversion 43 

(25–28), but it is not clear how arousal might influence attention allocation and the process 44 

of decision-making between risky choices that do not involve losses. To pin down the 45 
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changes in the decision process that characterize high stakes risk aversion, we measured 46 

arousal, attention, and attitudes towards risk while experiment participants chose 47 

between two lotteries, one safe and one risky, each with two strictly positive payoffs, from 48 

the well-known task of Holt & Laury (2002) (see Table S1). Prior to participating in each 49 

block of 20 choice trials, participants learned the specific payoffs (Figs. 1A-B) and whether 50 

a randomly determined choice would be selected for real payment. The high hypothetical 51 

(Block 2) and high real (Block 3) conditions involved the same 10 lottery choices (repeated 52 

twice in two randomly ordered sub-blocks) as in the low real blocks (1 and 4), but with 53 

payoffs multiplied by 50. During the task, we recorded reaction time, choice consistency, 54 

gaze fixation, pupil dilation, pulse rate, and skin conductance from N=46 participants 55 

(median age=21, 28 males, 7 excluded due to data collection problems – see 56 

supplementary material) (Fig. 1C). We hypothesized that large changes in stakes would 57 

generate a pronounced autonomic response, and that this response would be associated 58 

with both increased risk aversion and changes in the decision-making process.  59 

 60 
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 61 

Fig. 1. Task and behavior (A) Participants completed four blocks of paired lottery-choice 62 

decisions in order. The probability of the high payoff varied between 10% to 100%. Each 63 

choice (see Table S1) was presented twice, in sub-blocks of 10. The presentation format 64 

(left vs. right; top vs. bottom) and the order of the lottery-choice decisions within each 65 

sub-block were randomized across participants. (B) High payoffs (both hypothetical and 66 

real) were generated by multiplying the low payoffs by a scale factor of 50. (C) Example 67 

of a single decision round. (D) The rate of choosing the safe lottery across blocks and (E) 68 
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for each lottery-choice decision ordered by the probability of the high payoff (participant 69 

means). Implied risk aversion was greatest in the high real condition (Wilcoxon signed-70 

rank test, N=39: *** P-value < 0.001). Error bars denote 95% confidence intervals. 71 

 72 

Participants chose the safe option more frequently in the high stakes block 73 

(𝑀𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒>8%; Wilcoxon signed-rank test: N=39, all P<0.001; Fig. 1D-E), consistent 74 

with previously reported behavioral findings (13, 14) and in contrast to models that imply 75 

scale invariance (29). To examine the causal effect of incentives on arousal, we 76 

measured pulse rate, skin conductance, and pupil dilation, prior to stimulus presentation 77 

while participants viewed a fixation cross (see Fig. 1C). All three measures of pretrial 78 

arousal were significantly higher when stakes were high and real (𝑀𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒>0.332; 79 

Wilcoxon signed-rank test: N=39, all P<0.010) (Fig. 2A and Fig. S2). Since the three 80 

arousal measures were highly correlated, we computed their first principal component 81 

(pc1) to capture generalized arousal (see the supplementary material for procedures, and 82 

for data on phasic arousal). Individual differences in the effect of high stakes on implied 83 

risk aversion (mean number of safe choices in high real minus hypothetical) were 84 

positively and significantly associated with changes in arousal (Fig. 2B; Spearman rank 85 

correlation: N=39; 𝜌𝑠=0.441, P=0.005). 86 
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 87 

Fig. 2. Incentives, arousal, and attention. (A) Skin conductance, pulse rate, and pupil 88 

diameter were all higher under high real stakes. (B) Individual differences in the effect of 89 

high stakes on generalized arousal were strongly associated with changes in risk 90 

aversion. The percentage difference in safe choices (y-axis) in the high real vs. the 91 

hypothetical block is plotted against the change in arousal (x-axis). Generalized arousal 92 

is computed as the first principal component of the three pretrial arousal measures (pc1): 93 

skin conductance, pulse rate, and pupil size. (C) Dwell time advantage during the 94 

evaluation phase for the safe option (relative fixation duration on safe outcomes minus 95 

risky outcomes) was highest during the high real block. (D) Individual differences in the 96 

effect of high stakes on dwell time advantage for the safe option in the high real vs. the 97 
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hypothetical block (x-axis) were strongly associated with changes in risk aversion (y-axis). 98 

Spearman rank correlation and linear fits plotted in (B) and (D). Error bars and line bounds 99 

show 95% confidence intervals. For (A) and (C), Wilcoxon signed-rank test (N=39): ** P-100 

value < 0.01; *** P-value < 0.001.  101 

 102 

Gaze bias, whereby people tend to select the option that they have attended to the most, 103 

is a robust phenomenon in both simple and risky choice (25, 30–33). In our experiment,  104 

participants fixated significantly more on the safe option in the high real block 105 

(𝑀𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒>0.080; Wilcoxon signed-rank test: N=39, all P<0.001) (Fig. 2C and Fig. S4). 106 

Individual differences in implied risk aversion in the real vs. the hypothetical block were 107 

also positively and significantly associated with increases in dwell time for the safe option 108 

(Spearman rank correlation: N=39; 𝜌𝑠 =0.408, P=0.010) (Fig. 2D).  109 

 110 

High stakes also caused fixations to vary between attributes of the lotteries. Participants 111 

fixated relatively less on the risky high outcome and more on both outcomes of the safe 112 

option, in high real vs. hypothetical (risky high: 𝑀𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 0.039, safe high: 113 

𝑀𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =0.018, safe low: 𝑀𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =0.028; Wilcoxon signed-rank test: N=39, all 114 

P<0.051) (Fig. 3A). When participants chose the safe option, there was a gradual trend 115 

toward fixating more on both safe payoffs. However, when participants chose the risky 116 

option, there was an immediate and persistent fixation bias toward the risky high payoff 117 

(Figs. 3B-C, S5 and, S6). This difference might reflect resource rational attention 118 

allocation (20), as the contribution of the risky low payoff to the computation of expected 119 

utility is low, regardless of the probability of this outcome occurring. 120 
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 121 

Importantly, we find no evidence that increased risk aversion under high stakes is a 122 

mistake. On the contrary, the percentage of participants making inconsistent choices (i.e. 123 

selecting different options for the same decision within a block) was marginally lower 124 

under high real stakes (Blocks 3 and 2: 𝑀𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒=4.103; Wilcoxon signed-rank test: 125 

N=39, P=0.066; Blocks 3 and 1: 𝑀𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒=12.051, P<0.001; Blocks 3 and 4: 126 

𝑀𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒=2.564, P>0.100) (see Fig. 3D). We also compute the Payne index of visual 127 

information processing on each trial (34). Larger values of the index indicate more 128 

alternative-based evaluation and less reliance on heuristics. The average Payne index 129 

was greater under high real stakes compared to the high hypothetical (Block 2) and 130 

second low real block (Block 4) (𝑀𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒=0.030, 0.049, respectively; Wilcoxon signed-131 

rank test: N=39, both P<0.003) (see Fig. 3E). High stakes also resulted in increased 132 

reaction time, after controlling for the overall downward trend during the experiment (see 133 

Fig. S7). Taken together, these results suggest that high stakes increased both arousal 134 

and mental effort (15).  135 
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 136 

Fig. 3. Incentives and the choice process. (A) Relative fixation duration (dwell-time 137 

proportion) on each outcome and associated probability during the evaluation phase. 138 

Fixation duration on the risky high outcome decreased in the high real block relative to 139 

the other three blocks. Fixation duration on the risky low outcome remained relatively 140 

unchanged, and fixation duration on the safe high and low outcomes increased. (B-C) 141 

Cumulative proportion of the evaluation phase with gaze fixated on each outcome and 142 

associated probability when participants (B) chose the safe option and (C) chose the risky 143 

option. When choosing the safe option, participants fixated more on both the high and 144 
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low outcomes of the safe option. When choosing the risky option, however, participants 145 

fixated more on only the risky high outcome. Data shown are pooled within 100-146 

millisecond windows. (D) Percentage of participants making inconsistent choices and (E) 147 

mean Payne index of each decision for each block. Overall, choice inconsistency declines 148 

and Payne index increases under high real stakes.  Error bars and line bounds show 95% 149 

confidence intervals. Wilcoxon signed-rank test (N=39): * P-value < 0.05; ** P-value < 150 

0.01; *** P-value < 0.001; N.S. not significant. 151 

 152 

Drift Diffusion Models (DDMs) link reaction times and choices by positing that the 153 

accumulation of evidence about the value of the options is a stochastic process (35). The 154 

decision threshold represents the amount of information required before making a choice, 155 

while the drift rate represents the speed by which a decision maker accumulates 156 

information. We ran a simple DDM that allows the threshold to vary with pre-trial arousal 157 

(pc1). Arousal increased the amount of information required to arrive at a decision, 158 

signifying higher response caution (30) (β = 0.051, P < 0.0001;  where P =  1 − pd,159 

and pd is the posterior probability of direction) (Fig. 4A).  160 

 161 

Extensions of the DDM incorporate the effect of visual attention on choice to demonstrate 162 

how gaze modulates value computations (31, 30, 32, 36). Since autonomic arousal is 163 

thought to amplify the gain in information processing (4, 9, 24), we hypothesized that 164 

arousal would modulate gaze bias. To capture the interaction of arousal (pc1) and 165 

evaluation phase attention during evidence accumulation, we developed the arousal-166 

modulated Attentional Drift Diffusion model (aADDM). We fit the model using hierarchical 167 
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drift diffusion modeling (HDDM, see supplementary material) (37). The best fitting model, 168 

which closely matches observed data (see Fig. 4B-D and Fig. S8), allows for differential 169 

attention to high or low outcomes and interacts this attention with arousal.  170 

 171 

High-valued outcomes were discounted steeply when attending to low outcomes, and 172 

arousal amplifies this bias (𝛾𝐻𝑖𝑔ℎ= -4.96, P=0.005; 𝛾𝑝𝑐1∗𝐻𝑖𝑔ℎ= -4.09, P=0.002 – 𝑤ℎ𝑒𝑟𝑒 𝑃 =173 

 1 − 𝑝𝑑 – see supplementary material). On the other hand, low-valued outcomes were not 174 

discounted when participants attended to high outcomes, and there was no interaction 175 

with arousal (see Fig. 4E and Table S2; see Fig. S9 for models derived using selection 176 

phase gaze). These findings demonstrate that physiological arousal modulates the 177 

interaction of value and visual attention in risky choice such that the most informative 178 

attributes contribute more to evidence accumulation.  179 

  180 
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 181 

Fig. 4. Arousal-modulated Attentional Drift Diffusion Model (A) Arousal increased the 182 

decision threshold (𝛽 = 0.051, 𝑃 < 0.0001) in a simple drift-diffusion model. (B-D) 183 

Simulated choices from the best fitting model (see supplementary material) predicted (B) 184 

reaction time and (C) observed choices relative to the high outcomes’ value difference, 185 

and (D) the low outcomes’ value difference. Error spikes denote the standard error of the 186 

mean. Extreme outlier reaction times are not shown in (B), less than 1.3% of the data 187 
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points are omitted. (E) Gaze on the opposite outcome during the evaluation phase 188 

discounted the value of the high outcomes only (𝛾𝐻𝑖𝑔ℎ= -4.96, P (1-pd)=0.005). 189 

Generalized arousal amplified the high outcomes’ attentional bias during the evaluation 190 

phase (𝛾𝑝𝑐1𝑡𝑜𝑛𝑖𝑐∗𝐻𝑖𝑔ℎ= -4.09, P (1-pd)=0.002) (see the supplementary material for details).  191 

  192 
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Supplementary Materials 22 

Materials and Methods 23 

Subjects 24 

All procedures were approved by Virginia Tech Institutional Review Board, and each participant 25 

provided informed consent prior to participation. There was no deception involved in this study. 26 

The average payment received by participants was $108.58, which includes $10 show-up fee. Each 27 

participant made a total of 80 lottery choices, using Holt & Laury (2002) (14)  lotteries (see Table 28 

S1). Initially we recruited 46 participants but data from 39 were used in our final analysis, as seven 29 

participants from our original sample were excluded due to either poor eye tracking data (5 30 

participants), stimulus computer crash (1 participant) or non-responsive skin conductance 31 

measurement (1 participant). Thus, our analysis sample included 24 males and 15 females with an 32 

average age of 22 (minimum age: 18, maximum age: 33).  33 

 34 

Task 35 

We only used two stake sizes from Holt & Laury's (2002) original lottery choices: the low stake 36 

size (1X) and a high-stake size of 50X (the exact payoffs in each stake size condition are shown 37 

in Fig. 1B of the main text). Our experiment employs a within-subject design in which each 38 

participant completes four blocks in the following order (see Fig. 1A of the main text): 39 

1) Low Real1 (1X): 20 low stakes choices with one choice randomly selected for payment. 40 

2) High Hypothetical (50X): 20 hypothetical choices of the high payoffs. 41 

3) High Real (50X): 20 high stakes choices with one choice randomly selected for payment. 42 

4) Low Real2 (1X): 20 low stakes choices with one choice randomly selected for payment. 43 

 44 

Participants were presented with the lottery choices sequentially. The order of the lotteries within 45 

a block is randomized across participants who see each decision problem twice, once in the first 46 

10 trials and once again in the second 10 trials. To help ensure that participants scan all the 47 

information on the screen and that the presentation format is not causing a bias, we add variation 48 

in the presentation format as follows: for each of the first 10 trials, a random number determines 49 

which of the presentation formats is used with an equal chance of each of the following: 1) the 50 

safe lottery up and the high payoffs to the left, 2) the safe lottery up and the high payoffs to the 51 

right, 3) the safe lottery down and the high payoffs to the left, and 4) the safe lottery down and the 52 

high payoffs to the right. In the second 10 trials in a block, we show the same 10 payoffs and 53 

associated probabilities again but with the opposite presentation format. A participant, for 54 

example, who sees one of the decision problems with the safe lottery up and the large payoffs to 55 

the left during the first 10 trials, would be presented with the same decision problem but with the 56 

safe lottery down and the large payoffs to the right during the second 10 trials. The order of the 57 

lottery choices within a block is randomized across participants for the first 10 trials and again for 58 

the next 10 trials. The order of the four blocks, however, is the same for all participants.  59 

 60 

Prior to moving to the next block, one lottery from the completed block is randomly selected and 61 

realized to determine the payoff for that block. In order to proceed to the high real block and to 62 

control for wealth effects, participants had to agree to forfeit the first block’s payment before they 63 

proceeded. Unsurprisingly, all participants elected to forfeit their first block’s payment. For the 64 

high hypothetical block, we asked participants to acknowledge that the payoffs in that block were 65 

hypothetical and will not be paid. Also, to familiarize participants with the payoff structure 66 
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associated with that upcoming block, one random trial from the block was presented during the 67 

instruction phase of that block and prior to making decisions.  68 

 69 

Procedures 70 

After participants arrive in the lab and complete the consent phase, we first connect the transducers 71 

that measure heart rate and skin conductance to three fingers on the left hand.  The next step is the 72 

calibration and validation process for the EyeLink 1000 plus eye tracker, which typically takes 5 73 

to 10 minutes. This step is important in accurately collecting gaze data. Next, participants are 74 

presented with the instructions that are specific to the block they will see. During each trial, a 75 

fixation cross appears at the center of the screen for 2 seconds before the two options are presented 76 

on the screen for 8 seconds (Evaluation Phase: EP) (see Fig. 1C in the main text). Pretrial 77 

psychophysiological measured during the presentation of the fixation cross reflect tonic level of 78 

arousal, and arousal measured during the Evaluation Phase reflect phasic arousal level (38). 79 

Pupillometry studies, for example, show that drugs that induce low arousal decrease baseline pupil 80 

diameter (Hou et al., 2005) whereas responding to stimuli in cognitive tasks rapidly increases pupil 81 

size (Beatty, 1982). After 8 seconds, two rectangular grey boxes appear on the screen, one for each 82 

option. Participants had unlimited time to use the arrow keys on the keyboard, causing the box on 83 

the selected option to become red, until selecting the option that they prefer by pressing the Enter 84 

button (Selection Phase: SP). Once an option is submitted, a fixation cross appears again before 85 

the next trial is presented. Reaction time was recorded once the rectangular grey boxes appear on 86 

the screen. Each participant was informed of each block’s outcome before reading the instructions 87 

for the next block. The mean duration of the experimental session was around 50 minutes.  88 

 89 

Eye-tracking and Physiological Measurements 90 

Presentation of the gambles and the selection of options were programmed using Matlab, 91 

employing Psychophysics and Eyelink toolbox extensions (http://psychtoolbox.org/) to record eye 92 

movements and pupil dilation. We collected eye tracking data using the EyeLink 1000 Plus eye 93 

tracker, which consists of a High-Speed Camera that records 1000 samples per second and a Host 94 

PC that is dedicated to receiving and processing the collected data (see http://www.sr-95 

research.com/mount_desktop_1000plus.html for more information). We used a desktop mount 96 

that sits in front of the stimulus monitor, and we employ an adjustable head stabilizer (chin rest) 97 

to improve data quality. Participants face the camera, which is placed in front of the monitor. Prior 98 

to the presentation of each decision, a fixation cross appears on the monitor for 2 seconds as 99 

highlighted in the previous section. Pretrial pupil dilation is measured as the baseline mean pupil 100 

size 1 second before stimulus presentation while evaluation phase (phasic) pupil dilation is 101 

measured as the difference between maximum pupil size recorded in the evaluation phase and the 102 

pretrial (tonic) pupil size (Fig. S1) (38, 41, 42). We then compute pretrial pupil size and evaluation 103 

phase pupil dilation z-scores for each participant. 104 

 105 

Physiological data on pulse rate and skin conductance were collected using the software 106 

Aqcknowledge version 5.0.4, BIOPAC MP160WSW data acquisition system and BioNomadix 107 

PPG & EDA system. The data was recorded at 2000 samples per second (see www.biopac.com 108 

for details). The following physiological measures were collected via wireless devices worn on the 109 

left hand: Electrodermal Activity (EDA) and Pulse Photoplethysmogram (PPG) (43, 44). EDA 110 

(also known as Galvanic Skin Response (GSR) or Skin Conductance Activity (SCA)) is a measure 111 

of eccrine activity or skin sweating. EDA signal can be obtained from placing two electrodes (Ag-112 
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AgCl) on two different fingers of the hand while very low constant voltage is applied (which is 113 

not felt by the participant). The constant voltage is maintained between the two electrodes such 114 

that current flow is proportional to skin conductance (45). We placed the (disposable) electrodes 115 

on the ring and middle fingers of the left hand (between the middle and distal phalanges). Before 116 

exporting the data for analysis in Stata 15.1, we used the software Aqcknowledge version 5.0.4 to 117 

filter and smooth the data and to mark skin conductance responses.  118 

 119 

EDA data were down sampled to 250 Hz before further analysis. We derived pretrial Skin 120 

Conductance Level (SCL) as a one second mean of skin conductance before stimulus presentation 121 

and during fixation cross presentation (41, 45).  Moreover, we set a minimal response criterion at 122 

0.02 μS (microSiemens), and we measured evaluation phase skin conductance response (SCR) as 123 

the maximum recorded response by trough-to-peak amplitude difference in the time window 1 124 

second after the presentation of the lotteries in a trial till 8 seconds from onset (Fig. S1). SCL 125 

relates to the general level of skin conductance, which reacts slowly, while SCR reacts faster to 126 

presented stimuli (45). For data processing, we applied the following: low-pass filtering (25 Hz), 127 

smoothing (3 sample kernel), and applying a square root transformation (27). We then estimate a 128 

z-score for each participant to facilitate comparisons within and across participants. Thus, we 129 

derive our two measures (z-score) of skin conductance: 1) pretrial skin conductance level and 2) 130 

evaluation phase skin conductance responses.  131 

  132 

PPG provides measurements for pulse rate and is measured via a wireless transducer that monitors 133 

changes in infrared reflectance resulting from varying blood flow. The pulse transducer was placed 134 

on the index finger’s distal phalange of the same hand where the electrodes were placed. The PPG 135 

signal was down sampled (250 Hz) and smoothed (3 sample kernel) before deriving the pulse rate 136 

using a minimum threshold of 0.05 volts. The pulse rate signal was also smoothed (3 sample 137 

kernel). Similar to skin conductance, we computed the mean pretrial measure of heart rate as a one 138 

second average before stimulus presentation (46, 41). We then compute the mean pulse rate 139 

recorded during the first 8 seconds from stimuli presentation onset (Fig. S1). And, we generate an 140 

analogous phasic (change from baseline) pulse rate measure by subtracting the pretrial measure of 141 

pulse rate from the 8 second mean evaluation phase pulse rate. For consistency, we refer to this 142 

measure as evaluation phase pulse rate. Last, we derived pretrial and evaluation phase pulse rate 143 

z-scores for each participant. 144 

HDDM estimation 145 

HDDM involves Markov Chain Monte-Carlo (MCMC) sampling to estimate DDM parameters for 146 

both individual and group-level. To avoid an explosion in the number of parameters and to aid in 147 

convergence, we only estimate individual estimates for the intercept in the drift rate regression and 148 

we obtain group estimates for the remaining regression coefficients (47). In the HDDM estimation 149 

for all our models, we used 6000 samples drawn from the posterior and discarded the first 1000 150 

samples as burn-in. In our models, we fit participant’s choice (safe/risky) along with reaction time 151 

and we fit regression models for drift rate as outlined in the subsequent section. To investigate how 152 

trial-to-trial changes in arousal levels influence the decision threshold, we also run a separate 153 

model that fits a regression model for threshold with pretrial arousal as a regressor (DIC=11864). 154 
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aADDM 155 

Our arousal-modulated Attentional Drift Diffusion Model (aADDM) integrates arousal to 156 

previously developed sequential sampling models (48–50, 36). Estimated subjective utilities have 157 

been used to substitute objective values when the latter cannot always be identified and has been 158 

implemented in an application to risky choice experiments (51). Thus, we resort to estimating 159 

subjective utilities for each outcome, and each option, using power-expo utility function (𝑈(𝑥) =160 
1−exp⁡(−𝛼𝑥1−𝑟)

𝛼
) given the functional form’s superiority in modelling increased risk aversion with 161 

increased stakes (52, 14). Note that both constant relative risk aversion and constant absolute risk 162 

aversion are special cases in the power-expo model when 𝛼 and 𝑟 converge to zero, respectively.  163 

Power-expo utility function allows for the common finding of increasing relative risk aversion and 164 

decreasing absolute risk aversion. 165 

 166 

Using observations from real blocks only, we fit a nonlinear mixed effects model using maximum 167 

likelihood (menl function in Stata 15.1) to estimate each participant’s 𝛼 and 𝑟 parameters in the 168 

power-expo function while including an individual level noise parameter 𝜇 (53). We specify an 169 

unstructured covariance structure between the random intercepts 𝛼, 𝑟 and 𝜇, and we estimate an 170 

exchangeable covariance structure for within-subject errors. For 𝜇 approaching zero, the option 171 

with the higher expected utility is chosen with certainty while for larger values of 𝜇,⁡the probability 172 

of choosing that option converges to one-half. The trial likelihood function involved estimating 173 

the probability of choosing the top option presented on the screen such that: 174 

𝑝𝑟(𝑐ℎ𝑜𝑜𝑠𝑖𝑛𝑔⁡𝑡𝑜𝑝⁡𝑜𝑝𝑡𝑖𝑜𝑛) =
𝑈𝑡𝑜𝑝

1
𝜇

𝑈𝑡𝑜𝑝

1
𝜇

+𝑈𝑏𝑜𝑡𝑡𝑜𝑚

1
𝜇

 and 𝑈{𝑡𝑜𝑝,𝑏𝑜𝑡𝑡𝑜𝑚} are formulated using the power-expo 175 

utility function weighted by the probabilities of each outcome. Note that decisions from the 176 

hypothetical block were omitted during the estimation procedure. The individual estimates of  𝛼 177 

and 𝑟 were then used to compute subjective utilities for each outcome that were later used in the 178 

HDDM estimation: subjective values (sv) for the safe high (SH), risky high (RH), safe low (SL) 179 

and risky low (RL) (svSH, svRH, svSL, svRL, respectively). We normalize the subjective values for 180 

each individual between 0 (lowest value) and 1 (highest value). Outcomes’ subjective values were 181 

then summed up to derive the subjective value for each of the options (svsafe, svrisky) that were 182 

used in the option-wise models. Two participants (out of 39) had estimates of r that were greater 183 

than 1. For both participants, we divided their subjective values by 1-r before adding twice the 184 

lowest subjective value estimated for each participant. This helped us ensure that for all 185 

participants, a more positive value indicates higher subjective value with a subjective value of zero 186 

given only when the probability of receiving the payoff is zero. These steps were necessary for 187 

applying our normalization technique that is consistent across our participants. Our results remain 188 

the same if we, instead, exclude these two participants from our analysis. 189 

 190 

We estimate both option-wise and attribute-wise models to analyze the decision process of 191 

choosing the safe option while allowing for attentional bias to influence evidence accumulation. 192 

Equations SE1-SE3 outline the option-wise models’ specification for the drift rate (vij, participant 193 

i in trial j), while equations SE4-SE6 outline that of the attribute-wise models. Equations SE1PC1-194 

SE6PC1 outline the drift rate specifications that allow pretrial arousal (first principal component 195 

of the arousal measures – 𝑝𝑐1) to modulate all other included variables.  196 

 197 
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In model SE1 (option-wise additive), we allow the drift rate to vary with the value difference 198 

between the safe (𝑠𝑣𝑠𝑎𝑓𝑒) and risky (𝑠𝑣𝑟𝑖𝑠𝑘𝑦)⁡options. Also, we include additive (simple) gaze 199 

bias: relative fixation duration spent on the safe option (𝑔𝑠𝑎𝑓𝑒)⁡minus that spent on the risky one 200 

(𝑔𝑟𝑖𝑠𝑘𝑦). In model SE2 (option-wise multiplicative), we allow the values of the fixated option (𝑓𝑖𝑥) 201 

to be integrated differently from the values of non-fixated option (𝑛𝑜𝑛𝑓𝑖𝑥). In model SE3 (option-202 

wise additive and multiplicative), we allow both additive and multiplicative gaze to influence the 203 

decision process. 204 

 205 
Model SE1: 𝐯𝐢𝐣 = 𝛃𝟎𝐢 +𝛃𝐬𝐯(𝐬𝐯𝐬𝐚𝐟𝐞 − 𝐬𝐯𝐫𝐢𝐬𝐤𝐲)𝐣 + 𝛃𝚫𝐠(𝐠𝐬𝐚𝐟𝐞 − 𝐠𝐫𝐢𝐬𝐤𝐲)𝐣 206 

 207 
Model SE1PC1: 𝐯𝐢𝐣 = 𝛃𝟎𝐢 +𝛃𝐩𝐜𝟏𝐩𝐜𝟏𝒋 + 𝛃𝐬𝐯(𝐬𝐯𝐬𝐚𝐟𝐞 − 𝐬𝐯𝐫𝐢𝐬𝐤𝐲)𝐣 + 𝛃𝐬𝐯∗𝐩𝐜𝟏(𝐬𝐯𝐬𝐚𝐟𝐞 − 𝐬𝐯𝐫𝐢𝐬𝐤𝐲)𝐣 ∗ 𝐩𝐜𝟏𝒋 +208 

𝛃𝚫𝐠(𝐠𝐬𝐚𝐟𝐞 − 𝐠𝐫𝐢𝐬𝐤𝐲)𝐣 +𝛃𝚫𝐠∗𝐩𝐜𝟏(𝐠𝐬𝐚𝐟𝐞 − 𝐠𝐫𝐢𝐬𝐤𝐲)𝐣 ∗ 𝐩𝐜𝟏𝒋 209 

 210 
Model SE2: 𝐯𝐢𝐣 = 𝛃𝟎𝐣 + 𝛃𝐟𝐢𝐱(𝐠𝐬𝐚𝐟𝐞 ∗ 𝐬𝐯𝐬𝐚𝐟𝐞 − 𝐠𝐫𝐢𝐬𝐤𝐲 ∗ 𝐬𝐯𝐫𝐢𝐬𝐤𝐲)𝐣 + 𝛃𝐧𝐨𝐧𝐟𝐢𝐱(𝐠𝐫𝐢𝐬𝐤𝐲 ∗ 𝐬𝐯𝐬𝐚𝐟𝐞 − 𝐠𝐬𝐚𝐟𝐞 ∗ 𝐬𝐯𝐫𝐢𝐬𝐤𝐲)𝐣 211 

 212 
Model SE2PC1: 𝐯𝐢𝐣 = 𝛃𝟎𝐣 + 𝛃𝐩𝐜𝟏𝐩𝐜𝟏𝒋 +𝛃𝐟𝐢𝐱(𝐠𝐬𝐚𝐟𝐞 ∗ 𝐬𝐯𝐬𝐚𝐟𝐞 − 𝐠𝐫𝐢𝐬𝐤𝐲 ∗ 𝐬𝐯𝐫𝐢𝐬𝐤𝐲)𝐣 +𝛃𝐟𝐢𝐱∗𝐩𝐜𝟏(𝐠𝐬𝐚𝐟𝐞 ∗ 𝐬𝐯𝐬𝐚𝐟𝐞 − 𝐠𝐫𝐢𝐬𝐤𝐲 ∗213 

𝐬𝐯𝐫𝐢𝐬𝐤𝐲)𝐣 ∗ 𝐩𝐜𝟏𝒋 + 𝛃𝐧𝐨𝐧𝐟𝐢𝐱(𝐠𝐫𝐢𝐬𝐤𝐲 ∗ 𝐬𝐯𝐬𝐚𝐟𝐞 − 𝐠𝐬𝐚𝐟𝐞 ∗ 𝐬𝐯𝐫𝐢𝐬𝐤𝐲)𝐣 + 𝛃𝐧𝐨𝐧𝐟𝐢𝐱∗𝐩𝐜𝟏(𝐠𝐫𝐢𝐬𝐤𝐲 ∗ 𝐬𝐯𝐬𝐚𝐟𝐞 − 𝐠𝐬𝐚𝐟𝐞 ∗ 𝐬𝐯𝐫𝐢𝐬𝐤𝐲)𝐣 ∗ 𝐩𝐜𝟏𝒋 214 

 215 
Model SE3 𝒗𝒊𝒋 = 𝛃𝟎𝐣⁡ + 𝛃𝐟𝐢𝐱(𝐠𝐬𝐚𝐟𝐞 ∗ 𝐬𝐯𝐬𝐚𝐟𝐞 − 𝐠𝐫𝐢𝐬𝐤𝐲 ∗ 𝐬𝐯𝐫𝐢𝐬𝐤𝐲)𝐣 + 𝛃𝐧𝐨𝐧𝐟𝐢𝐱(𝐠𝐫𝐢𝐬𝐤𝐲 ∗ 𝐬𝐯𝐬𝐚𝐟𝐞 − 𝐠𝐬𝐚𝐟𝐞 ∗ 𝐬𝐯𝐫𝐢𝐬𝐤𝐲)𝐣 + 216 

𝛃𝚫𝐠(𝐠𝐬𝐚𝐟𝐞 − 𝐠𝐫𝐢𝐬𝐤𝐲)𝐣 217 

 218 
Model SE3PC1 𝐯𝐢𝐣 = 𝛃𝟎𝐣⁡ + 𝛃𝐩𝐜𝟏𝐩𝐜𝟏𝒋 + 𝛃𝐟𝐢𝐱(𝐠𝐬𝐚𝐟𝐞 ∗ 𝐬𝐯𝐬𝐚𝐟𝐞 − 𝐠𝐫𝐢𝐬𝐤𝐲 ∗ 𝐬𝐯𝐫𝐢𝐬𝐤𝐲)𝐣 +𝛃𝐟𝐢𝐱∗𝐩𝐜𝟏(𝐠𝐬𝐚𝐟𝐞 ∗ 𝐬𝐯𝐬𝐚𝐟𝐞 − 𝐠𝐫𝐢𝐬𝐤𝐲 ∗219 

𝐬𝐯𝐫𝐢𝐬𝐤𝐲)𝐣 ∗ 𝐩𝐜𝟏𝒋 + 𝛃𝐧𝐨𝐧𝐟𝐢𝐱(𝐠𝐫𝐢𝐬𝐤𝐲 ∗ 𝐬𝐯𝐬𝐚𝐟𝐞 − 𝐠𝐬𝐚𝐟𝐞 ∗ 𝐬𝐯𝐫𝐢𝐬𝐤𝐲)𝐣 + 𝛃𝐧𝐨𝐧𝐟𝐢𝐱∗𝐩𝐜𝟏(𝐠𝐫𝐢𝐬𝐤𝐲 ∗ 𝐬𝐯𝐬𝐚𝐟𝐞 − 𝐠𝐬𝐚𝐟𝐞 ∗ 𝐬𝐯𝐫𝐢𝐬𝐤𝐲)𝐣 ∗220 

𝐩𝐜𝟏𝒋 + 𝛃𝚫𝐠(𝐠𝐬𝐚𝐟𝐞 − 𝐠𝐫𝐢𝐬𝐤𝐲)𝐣 + 𝛃𝚫𝐠∗𝐩𝐜𝟏(𝐠𝐬𝐚𝐟𝐞 − 𝐠𝐫𝐢𝐬𝐤𝐲)𝐣 ∗ 𝐩𝐜𝟏𝒋 221 

 222 

We also run attribute-wise variant models where attention to the high outcomes (high payoffs and 223 

their associated probabilities) in the presented lotteries are allowed to influence the decision 224 

process differently compared to attention to the low outcomes. These models are useful in 225 

examining whether visual attention directed at particular attributes in decision problems influence 226 

evidence accumulation differently (36). Equations SE4-SE5 and SE6 outline the specification 227 

models for the drift rate (𝑣𝑖𝑗) in our attribute-wise models for the decision process of choosing the 228 

safe option. In model SE4 (attribute-wise additive), we allow the drift rate to differ across high 229 

and low outcomes. In particular, the evaluation of the high outcomes of the safe (𝑠𝑣𝑠𝑎𝑓𝑒𝐻𝑖𝑔ℎ) and 230 

that of the risky option (𝑠𝑣𝑅𝑖𝑠𝑘𝑦𝐻𝑖𝑔ℎ)⁡influence the drift rate differently compared to the evaluation 231 

of the low outcome of the safe option (𝑠𝑣𝑠𝑎𝑓𝑒𝐿𝑜𝑤) and that of the risky option (𝑠𝑣𝑅𝑖𝑠𝑘𝑦𝐿𝑜𝑤). In 232 

addition, we include a term for the gaze difference of attending to the safe option’s high outcome  233 

(𝑔𝑠𝑎𝑓𝑒𝐻𝑖𝑔ℎ) instead of the risky option’s high outcome  (𝑔𝑅𝑖𝑠𝑘𝑦𝐻𝑖𝑔ℎ)⁡and another analogous term 234 

for attending to the safe option’s low outcome (𝑔𝑠𝑎𝑓𝑒𝐿𝑜𝑤) instead of the risky option’s low outcome 235 

(𝑔𝑅𝑖𝑠𝑘𝑦𝐿𝑜𝑤). This represents simple (additive) gaze bias that is independent of the particular 236 

attribute value but is again allowed to influence drift rate differently for high and low outcomes. 237 

In model SE5 (attribute-wise multiplicative), we allow the subjective value differences, between 238 

1) safe high (𝑔𝑆𝐻) and risky high (𝑔𝑅𝐻) and 2) safe low (𝑔𝑆𝐿) and risky low (𝑔𝑅𝐿), to be evaluated 239 

Electronic copy available at: https://ssrn.com/abstract=3943681
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at different rates when fixating on the same attribute (sameA), or the other attribute (otherA), of 240 

the same option (sameO) or of the other option (otherO). Importantly, we estimate different 241 

weights for the evaluation of the high outcomes (H) compared to that of the low outcomes (L). In 242 

model SE6 (attribute-wise additive and multiplicative), we allow both additive and multiplicative 243 

gaze to influence evidence accumulation. Each variable in this last model (SE6) is then interacted 244 

with arousal (SE6PC1) and yields the results reported in main text. This is the model that provides 245 

the best model fits for both evaluation phase and selection phase gaze (see Fig. S8). 246 
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⁡𝛃𝚫𝐠𝐇𝐢𝐠𝐡 (𝐠𝐬𝐚𝐟𝐞𝐇𝐢𝐠𝐡 − 𝐠𝐑𝐢𝐬𝐤𝐲𝐇𝐢𝐠𝐡)𝐣
+  𝛃𝚫𝐠𝐋𝐨𝐰(𝐠𝐬𝐚𝐟𝐞𝐋𝐨𝐰 − 𝐠𝐑𝐢𝐬𝐤𝐲𝐋𝐨𝐰)𝐣 275 

 276 
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Model SE6PC1: 𝐯𝐢𝐣 = 𝛃𝟎𝐣 + 𝛃𝐩𝐜𝟏𝐩𝐜𝟏𝐣 + 𝛃𝐇𝐬𝐚𝐦𝐞𝐎𝐬𝐚𝐦𝐞𝐀
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+278 

𝛃𝐇𝐬𝐚𝐦𝐞𝐎𝐨𝐭𝐡𝐞𝐫𝐀
∗𝐩𝐜𝟏⁡ (𝐠𝐒𝐋𝐬𝐯𝐬𝐚𝐟𝐞𝐇𝐢𝐠𝐡 − 𝐠𝐑𝐋𝐬𝐯𝐑𝐢𝐬𝐤𝐲𝐇𝐢𝐠𝐡)𝐣

∗ 𝐩𝐜𝟏𝐣 + 𝛃𝐇𝐨𝐭𝐡𝐞𝐫𝐎𝐬𝐚𝐦𝐞𝐀
(𝐠𝐑𝐇𝐬𝐯𝐬𝐚𝐟𝐞𝐇𝐢𝐠𝐡 − 𝐠𝐒𝐇𝐬𝐯𝐑𝐢𝐬𝐤𝐲𝐇𝐢𝐠𝐡)𝐣

+279 

𝛃𝐇𝐨𝐭𝐡𝐞𝐫𝐎𝐬𝐚𝐦𝐞𝐀
∗𝐩𝐜𝟏 (𝐠𝐑𝐇𝐬𝐯𝐬𝐚𝐟𝐞𝐇𝐢𝐠𝐡 − 𝐠𝐒𝐇𝐬𝐯𝐑𝐢𝐬𝐤𝐲𝐇𝐢𝐠𝐡)𝐣

∗ 𝐩𝐜𝟏𝐣 + 𝛃𝐇𝐨𝐭𝐡𝐞𝐫𝐎𝐨𝐭𝐡𝐞𝐫𝐀
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∗ 𝐩𝐜𝟏𝐣 + 𝛃𝐋𝐬𝐚𝐦𝐞𝐎𝐬𝐚𝐦𝐞𝐀
(𝐠𝐒𝐋𝐬𝐯𝐬𝐚𝐟𝐞𝐋𝐨𝐰 − 𝐠𝐑𝐋𝐬𝐯𝐑𝐢𝐬𝐤𝐲𝐋𝐨𝐰)𝐣 +281 

𝛃𝐋𝐬𝐚𝐦𝐞𝐎𝐬𝐚𝐦𝐞𝐀
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(𝐠𝐒𝐇𝐬𝐯𝐬𝐚𝐟𝐞𝐋𝐨𝐰 − 𝐠𝐑𝐇𝐬𝐯𝐑𝐢𝐬𝐤𝐲𝐋𝐨𝐰)𝐣 +282 

𝛃𝐋𝐬𝐚𝐦𝐞𝐎𝐨𝐭𝐡𝐞𝐫𝐀
∗𝐩𝐜𝟏(𝐠𝐒𝐇𝐬𝐯𝐬𝐚𝐟𝐞𝐋𝐨𝐰 − 𝐠𝐑𝐇𝐬𝐯𝐑𝐢𝐬𝐤𝐲𝐋𝐨𝐰)𝐣 ∗ 𝐩𝐜𝟏𝐣 + 𝛃𝐋𝐨𝐭𝐡𝐞𝐫𝐎𝐬𝐚𝐦𝐞𝐀

(𝐠𝐑𝐋𝐬𝐯𝐬𝐚𝐟𝐞𝐋𝐨𝐰 − 𝐠𝐒𝐋𝐬𝐯𝐑𝐢𝐬𝐤𝐲𝐋𝐨𝐰)𝐣 +283 

𝛃𝐋𝐨𝐭𝐡𝐞𝐫𝐎𝐬𝐚𝐦𝐞𝐀
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𝛃𝐋𝐨𝐭𝐡𝐞𝐫𝐎𝐨𝐭𝐡𝐞𝐫𝐀∗𝐩𝐜𝟏
(𝐠𝐑𝐇𝐬𝐯𝐬𝐚𝐟𝐞𝐋𝐨𝐰 − 𝐠𝐒𝐇𝐬𝐯𝐑𝐢𝐬𝐤𝐲𝐋𝐨𝐰)𝐣 ∗ 𝐩𝐜𝟏𝐣 +⁡𝛃𝚫𝐠𝐇𝐢𝐠𝐡 (𝐠𝐬𝐚𝐟𝐞𝐇𝐢𝐠𝐡 − 𝐠𝐑𝐢𝐬𝐤𝐲𝐇𝐢𝐠𝐡)𝐣

+285 

𝛃𝚫𝐠𝐇𝐢𝐠𝐡∗𝐩𝐜𝟏 (𝐠𝐬𝐚𝐟𝐞𝐇𝐢𝐠𝐡 − 𝐠𝐑𝐢𝐬𝐤𝐲𝐇𝐢𝐠𝐡)𝐣
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𝐩𝐜𝟏𝐣 287 

 288 

In the main text, we report multiplicative attentional discounting of high and low outcomes. This 289 

bias was examined by computing the posterior parameter density for the following terms in 290 

equation SE6PC1: γHigh = βHsameOotherA
+ βHotherOotherA

− βHsameOsameA
− βHotherOsameA

. Note 291 

that a negative γHigh provides evidence that high outcome values are being discounted when 292 

fixating on the low outcomes. Similarly, γLow = βLsameOotherA
+ βLotherOotherA

− βLsameOsameA
−293 

βLotherOsameA
 computes the attentional discounting low outcome evaluation while fixating on high 294 

outcomes. We then derive analgous posterior parameter densitites to investigate arousal’s 295 

modulatory influence on attentional discounting across outcomes: γpc1∗High =296 

βpc1∗HsameOotherA
+ βpc1∗HotherOotherA

− βpc1∗HsameOsameA
− βpc1∗HotherOsameA

 and γpc1∗Low =297 

βpc1∗LsameOotherA
+ βpc1∗LotherOotherA

− βpc1∗LsameOsameA
− βpc1∗LotherOsameA

. 298 

 299 

Posterior Predictive Checks for aADDM 300 

Posterior predictive checks help in gauging the reliability of our model in producing observed 301 

behavioral patterns. We simulate 500 samples based on model estimates for each trial in our 302 

dataset.  We generate two quantiles for evaluation phase 1) gaze bias on the safe option’s high 303 

outcome instead of that of the risky option and 2) gaze bias on the safe option’s low outcome 304 

instead of that of the risky option (Fig. 4 in the main manuscript). We analogously generate two 305 

quantiles using selection phase gaze to test the latter models (Fig. S9). Then, we compare the 306 

frequency of choosing the safe option across both observed and simulated datasets for both 307 

evaluation phase and selection phase models. The results provide visual evidence that our model 308 

simulations fare well in predicting behavior with regard to attribute-wise subjective value 309 

difference and for reaction time (Fig. 4 and Fig. S9).  310 

 311 

Supplementary Text 312 

Physiological recordings and gaze bias within trials and across blocks 313 

We investigated how the trial’s milli-second to milli-second arousal differed across blocks. Even 314 

though the general pattern of arousal was similar across blocks, the greatest arousal levels were 315 

recorded during the high real block (Figs. S1-S2). Note that under high real stakes, the phasic 316 
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arousal measures, except for skin conductance response, did not significantly increase (see Fig. 317 

S3). By construct, the average pupil size and pulse rate phasic measures are inversely associated 318 

with their tonic (baseline) pretrial measures (42). The mild changes in phasic arousal under the 319 

high real stakes are in line with the Adaptive Gain Hypothesis, suggesting that high stakes may 320 

had instead induced a tonic high gain mode narrowing attention on the most strongly represented 321 

features of the lotteries (4, 42). The increased evaluation phase gaze bias toward the safe option’s 322 

attributes that we report in the main manuscript, and  the selection phase gaze bias shown in Fig. 323 

S3,  seems to suggest that the safe option is the pre-disposed sensory stimuli (see Fig. 3 in the main 324 

text). 325 

 326 

Gaze bias (dwell time advantage for the safe option relative to the risky one) spiked at the 327 

beginning of the high real block before declining over subsequent trials (Figs. S4). Moreover, 328 

individual differences in changes in selection phase dwell time advantage from high hypothetical 329 

to high real block were strongly associated with increased risk aversion (Spearman rank 330 

correlation: n=39; 𝜌𝑠 =0.873, P =4.3× 10−13).  Similar to fixations during the evaluation phase 331 

(see Fig. 3 in main manuscript and Fig. S5), participants were attending more to the risky option’s 332 

high payoff during selection phase when choosing the risky option (see Fig. S6).  333 

 334 

Additive gaze bias 335 

People are both influenced by what they look at but they also look at what they will choose (36, 336 

54). The former is accounted for by multiplicative gaze where attention boosts the value of fixated 337 

attributes, as reported in main text. The latter is accounted for by additive gaze where attention 338 

correlates to choice through a simple attention bias that is independent from value.  339 

 340 

We find that simple gaze bias holds for both high and low outcomes (model SE6PC1), with the 341 

former having a larger impact on drift rate and with arousal interacting with evaluation phase gaze 342 

to widen this gap. For these additive gaze terms, an overall similar pattern prevails in both 343 

evaluation phase gaze and selection phase gaze, where more time spent fixating on high (low) 344 

outcomes of the safe option instead of the risky option’s high (low) outcomes increases drift rate 345 

(EP:⁡βΔghigh = 0.85, P < 0.0001;⁡βΔglow = 0.79, P < 0.0001; ⁡SP:⁡βΔghigh = 1.39, P < 0.0001; 346 

βΔglow = 1.20, P < 0.0001) with the former having a greater influence for SP gaze (EP:βΔghigh −347 

βΔglow = 0.06, P = 0.333; ⁡SP: βΔghigh − βΔglow = 0.19, P = 0.019) (Fig. S9). Interestingly, we 348 

find that pretrial arousal does modulate additive EP gaze by enhancing its effect for high outcomes 349 

and weakening it for low outcomes (βpc1∗Δghigh = 0.12, P = 0.053 ; βpc1∗Δglow = −0.22, P =350 

0.010).  We thus find that arousal modulates both multiplicative and additive gaze bias during the 351 

evaluation phase of decision-making, amplifying attentional bias for high outcomes’ value 352 

integration while also modulating additive gaze terms. 353 

 354 

Direction of search 355 

Standard models of risky choice assume that agents employ a particular cognitive processing 356 

patterns (expectation models) where people weigh the subjective value (utility) of the available 357 

option by its likelihood of occurrence to compute an expected utility associated with each option 358 

for choosing the one that maximizes welfare (2). In lottery choices,  a strategy to choose the option 359 

with the higher expected utility is likely to involve more option-wise transitions (looking between 360 

attributes of the same alternative) rather than attribute-wise transitions (comparing probabilities or 361 
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comparing payoffs across alternatives) that are typically associated with the usage of decision 362 

heuristics (34, 55). Manipulating search strategy by presenting information that encourage within 363 

alternative-based transitions had been found to increase risk tolerance, establishing causal 364 

relationship between attention and risk decision making (56). As highlighted in the main text, we 365 

compute the Payne index, which has a larger score when transitions are more consistent with 366 

option-wise scan of information instead of attribute-wise ones (34).  367 

 368 

Using a median split, we then created two groups based on the change in the average first principal 369 

component for the pretrial arousal measures from hypothetical to high real block. Then, we 370 

investigate how the change in information acquisition patterns altered behavior differently across 371 

participants who had low changes in arousal compared to those experiencing high changes. In the 372 

subsequent analysis, we focus our attention on the hypothetical and high real blocks and on 373 

decision numbers 5 to 9 in which behavior differs the most during the high real stakes block (see 374 

Fig. 1E in main text) and where the expectation value model predicts choosing the risky option 375 

(see Table S1). We find a negative and significant association between the change in Payne index 376 

from high hypothetical to the high real block and the change in risk aversion for the highly aroused 377 

participants (Spearman rank correlation: N=19; 𝜌𝑠 =-0.737; P=0.0003) while no relationship was 378 

found for the modestly aroused group (Spearman rank correlation: N =20; 𝜌𝑠 =0.136; P =0.568). 379 

Thus, the change in information acquisition patterns are strong predictors for adhering with the 380 

expectation model for participants experiencing heightened arousal only, where more option-wise 381 

scans were strongly associated with choosing the risky option. In addition, we examine whether 382 

changes in evaluation phase arousal (first principal component of evaluation phase arousal 383 

measures) impact information acquisition and risk aversion differently across the two groups. 384 

Interestingly, we find that only highly (pretrial) aroused participants had a positive and significant 385 

relationship between the change in evaluation phase arousal and increased risk aversion (Spearman 386 

rank correlation: N =19; 𝜌𝑠 =0.566; P=0.012) and a negative and significant relationship between 387 

the change in evaluation phase arousal and the change in Payne index (Spearman rank correlation: 388 

N =19; 𝜌𝑠 = -0.528;  P =0.020). Changes in evaluation phase arousal did not systematically vary 389 

with changes in the frequency of choosing the safe option (Spearman rank correlation: N =20; 390 

𝜌𝑠 =-0.004; P=0.987) or with the changes in Payne index (Spearman rank correlation: N =20; 391 

𝜌𝑠 =-0.208; P=0.380) for the group that experienced low changes in pretrial arousal from the high 392 

hypothetical to the high real block. Our results provide support for the synergy between tonic 393 

(pretrial) and phasic (evaluation phase) arousal (57).  394 

  395 
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Supplementary Figures 396 

 397 

 398 

Fig. S1. Mean skin conductance, pulse rate and pupil size when viewing the fixation cross and during the 399 
evaluation phase. (A) Mean skin conductance level and (B) mean pulse rate across time in a trial for all participants 400 
and trials. (A-B) For each 100 milli-seconds, one datapoint is extracted by taking the average across 25 samples 401 
recorded. (C) Mean pupil size across time in a trial for all participants and trials. For each 100 milli-seconds, one 402 
datapoint is extracted by taking the mean across 100 samples recorded. Mean (D) skin conductance level, (E) pulse 403 
rate, and (F) pupil size across time in a trial for each block. All arousal measures are z-scored at the individual level 404 
across all trials. Mean (G) first principal component of the three arousal measures across time in a trial (G) for all 405 
participants and trials and (H) for each block. Pretrial measures are obtained as the one second average pre-stimulus 406 
presentation (red bounds) while evaluation phase measures are obtained post-stimulus presentation and prior to the 407 
selection phase (blue bounds). Evaluation phase skin conductance (skin conductance response- SCR) is derived as the 408 
maximum recorded response by trough-to-peak amplitude difference (squared-root transformation applied) in the time 409 
window 1 second after stimuli presentation till 8 seconds from onset (blue bounds starting at the light blue edge).  410 
Evaluation phase pulse rate is derived by subtracting the pretrial pulse measure from the 8 second average post-411 
stimulus presentation (prior to selection phase). Evaluation phase pupil size is derived by subtracting the pretrial pupil 412 
measure from the maximum pupil size during the 8 seconds post-stimulus presentation (prior to selection phase).  The 413 
shaded region shows 95% confidence intervals around the mean value for each measure. 414 

  415 
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 416 

Fig. S2. Mean skin conductance, pulse rate and pupil size across trials. Mean pretrial (A) skin conductance level, 417 
(B) pulse rate, and (C) pupil size are plotted against trials during the experimental session. Mean evaluation phase (D) 418 
skin conductance response, (E) pulse rate, and (F) maximum pupil size are plotted against trials during the 419 
experimental session. Decisions within a block were randomized across participants. (G) Mean first principal 420 
component across pretrial skin conductance level, pulse rate, and pupil size and (H) mean first principal component 421 
across evaluation phase skin conductance response, pulse rate, and maximum pupil size are plotted decisions during 422 
the experimental session. All measures are z-scored at the individual level across all trials. Line bounds show 95% 423 
confidence intervals. 424 

 425 

  426 
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 427 

Fig. S3. Incentives, (evaluation phase) arousal and (selection phase) attention. (A) Only skin conductance 428 
response was higher under high real stakes while evaluation phase pulse rate and pupil diameter (phasic measures) 429 
did not significantly differ across blocks. (B) Individual differences in the effect of high stakes on generalized 430 
evaluation phase arousal were not associated with changes in implied risk aversion. The percentage difference in safe 431 
choices (y-axis) in the high real vs. the hypothetical block is plotted against the change in evaluation phase arousal (x-432 
axis). Generalized evaluation phase arousal is computed as the first principal component of the three phasic arousal 433 
measures: skin conductance response, pulse rate and pupil size (Spearman rank correlation reported). (C) Dwell time 434 
advantage during the selection phase for the safe option (relative fixation duration on safe outcomes minus risky 435 
outcomes) was highest during the high real block. (D) Individual differences in the effect of high stakes on dwell time 436 
advantage for the safe option in the high real vs. the hypothetical block (x-axis) during the selection phase were 437 
strongly associated with changes in risk aversion (y-axis). Spearman rank correlation and  linear fits plotted in (B) and 438 
(D). Error bars and line bounds show 95% confidence intervals. For (A) and (C), Wilcoxon signed-rank test (N=39): 439 
** P-value < 0.01; *** P-value < 0.001; N.S. not significant.   440 
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 441 

 442 

Fig. S4. Gaze bias across trials. Five trial moving average of dwell time advantage for the safe option during (A) 443 
evaluation phase and (B) selection phase are plotted against trials during the experimental session and spike at the 444 
beginning of the high real block.  445 

  446 
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 447 

 448 

 449 

Fig. S5. Attention during the evaluation phase across blocks. Cumulative proportion, by blocks, of the evaluation 450 
phase with gaze fixated on each outcome and associated probability when participants (A-D) chose the safe option 451 
and (E-H) chose the risky option. Error bars and line bounds show 95% confidence intervals. 452 

  453 
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 454 

Fig. S6. Attention during selection phase. (A) Selection phase relative fixation duration (dwell-time proportion) on 455 
each outcome and associated probability during the evaluation phase. Fixation duration on the risky high outcome 456 
decreased in the high real block relative to the other three blocks.  Cumulative proportion of the evaluation phase with 457 
gaze fixated on each outcome and associated probability when participants (B) chose the safe option and (C) chose 458 
the risky option across all blocks. Cumulative proportion, by blocks, of the evaluation phase with gaze fixated on each 459 
outcome and associated probability when participants (D-G) chose the safe option and (H-K) chose the risky option. 460 
Reaction time (RT) cumulative distribution function (CDF) is shown. Error bars and line bounds show 95% confidence 461 
intervals. Wilcoxon signed-rank test (N=39): + P-value <0.10; * P-value < 0.05; ** P-value < 0.01; *** P-value < 462 
0.001; N.S. not significant. 463 

  464 

Electronic copy available at: https://ssrn.com/abstract=3943681



 17 

 465 

 466 

 467 

Fig. S7. Detrended reaction time. Average detrended reaction time across blocks. Quadratic time trend is applied. 468 
Error bars denote 95% confidence intervals. Wilcoxon signed-rank test (N=39): * P-value < 0.05; ** P-value < 0.01.  469 
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 470 

 471 

Fig. S8. Model fits for drift diffusion models. DIC for attribute-based and option-based models (A) with gaze 472 
recorded during evaluation phase and (B) with gaze recorded during the selection phase.   473 

  474 
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 475 

Fig. S9. Arousal-modulated Attentional Drift Diffusion Model: additive gaze bias and estimates from selection 476 
phase gaze. (A) Additive gaze bias for high and low attributes during evaluation phase ⁡(𝛃𝚫𝐠𝐡𝐢𝐠𝐡 = 𝟎. 𝟖𝟓, 𝒑 <477 

𝟎. 𝟎𝟎𝟎𝟏;⁡𝛃𝚫𝐠𝐥𝐨𝐰 = 𝟎. 𝟕𝟗, 𝒑 < 𝟎. 𝟎𝟎𝟎𝟏), with arousal strengthening it for high attributes and weakens it for low 478 
attributes (𝛃𝐩𝐜𝟏∗𝚫𝐠𝐡𝐢𝐠𝐡 = 𝟎. 𝟏𝟐, 𝒑 = 𝟎.𝟎𝟓𝟑 ; 𝛃𝐩𝐜𝟏∗𝚫𝐠𝐥𝐨𝐰 = −𝟎. 𝟐𝟐, 𝒑 = 𝟎. 𝟎𝟏). Simulated choices from the best fitting 479 

model (model SE6PC1) with selection phase gaze predicted (B) reaction time and (C) observed choices relative to the 480 
high outcomes’ value difference, and (D) the low outcomes’ value difference. Error spikes denote the standard error 481 
of the mean. Extreme outlier reaction times are not shown in (B), less than 1.3% of the data points are omitted. (E) 482 
Gaze on the opposite outcome during the evaluation phase discounted the value of the high outcomes only (𝛄𝐡𝐢𝐠𝐡= -483 
2.32, P (1-pd)=0.032). Arousal has no significant effect when interacted with multiplicative selection phase gaze. (F) 484 
Additive gaze bias for high and low outcomes during selection phase (𝛃𝚫𝐠𝐡𝐢𝐠𝐡 = 𝟏. 𝟑𝟗, 𝒑 < 𝟎. 𝟎𝟎𝟎𝟏; 𝛃𝚫𝐠𝐥𝐨𝐰 =485 

𝟏. 𝟐𝟎, 𝑷⁡(𝟏 − 𝒑𝒅) < 𝟎. 𝟎𝟎𝟎𝟏). Arousal had no significant effect when interacted with additive selection phase gaze 486 
bias. 487 

  488 
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Supplementary Tables 489 

 490 

Decision Option A: Safe  Option B: Risky EV diff. 

Outcome High Low High Low  

#  %of A1 $A1 %of A2 $A2 %of B1 $B1 %of B2 $B2  

1 10% 2 90% 1.6 10% 3.85 90% 0.1 1.165 

2 20% 2 80% 1.6 20% 3.85 80% 0.1 0.830 

3 30% 2 70% 1.6 30% 3.85 70% 0.1 0.495 

4 40% 2 60% 1.6 40% 3.85 60% 0.1 0.160 

5 50% 2 50% 1.6 50% 3.85 50% 0.1 -0.175 

6 60% 2 40% 1.6 60% 3.85 40% 0.1 -0.510 

7 70% 2 30% 1.6 70% 3.85 30% 0.1 -0.845 

8 80% 2 20% 1.6 80% 3.85 20% 0.1 -1.180 

9 90% 2 10% 1.6 90% 3.85 10% 0.1 -1.515 

10 100% 2 0% 1.6 100% 3.85 0% 0.1 -1.850 

Table S1. Holt & Laury (2002) choices (lowest stakes: 1X), expected value difference was not provided to 491 
participants. 492 

  493 

Electronic copy available at: https://ssrn.com/abstract=3943681



 21 

 494 
Table S2. Drift rate regression estimates for models SE6 with (1A) evaluation phase gaze and (1B) with 495 
selection phase gaze: Mean (SD) 496 
 497 

 498 

  High outcomes Low outcomes Additive Arousal 

Model 𝜷𝟎 𝜷𝑯𝒔𝒂𝒎𝒆𝑶𝒔𝒂𝒎𝒆𝑨
 𝜷𝑯𝒔𝒂𝒎𝒆𝑶𝒐𝒕𝒉𝒆𝒓𝑨

 𝜷𝑯𝒐𝒕𝒉𝒆𝒓𝑶𝒔𝒂𝒎𝒆𝑨
 𝜷𝑯𝒐𝒕𝒉𝒆𝒓𝑶𝒐𝒕𝒉𝒆𝒓𝑨

 𝜷𝑳𝒔𝒂𝒎𝒆𝑶𝒔𝒂𝒎𝒆𝑨
 𝜷𝑳𝒔𝒂𝒎𝒆𝑶𝒐𝒕𝒉𝒆𝒓𝑨

 𝜷𝑳𝒐𝒕𝒉𝒆𝒓𝑶𝒔𝒂𝒎𝒆𝑨
 𝜷𝑳𝒐𝒕𝒉𝒆𝒓𝑶𝒐𝒕𝒉𝒆𝒓𝑨

 𝜷𝜟𝒈𝒉𝒊𝒈𝒉
 𝜷𝜟𝒈𝒍𝒐𝒘

 𝜷𝒑𝒄𝟏 

1A: 

Evaluation 

Phase  

0.09 

(0.03) 

4.68 

(0.41) 

1.47 

(0.61) 

4.06 

(0.45) 

2.32 

(0.58) 

3.22 

(0.33) 

2.18 

(0.34) 

2.38 

(0.43) 

4.41 

(0.38) 

0.85 

(0.09) 

0.79 

(0.11) 

0.04 

(0.02) 

  Variables interacted with arousal (pc1)  

    
0.39 

(0.35) 

-1.20 

(0.54) 

0.75 

(0.37) 

-1.76 

(0.51) 

-0.51 

(0.28) 

-0.41 

(0.34) 

-0.27 

(0.28) 

-0.09 

(0.29) 

0.12 

(0.07) 

0.22 

(0.10) 
  

 

1B: 

Selection 

Phase  

0.10 

(0.03) 

2.38 

(0.24) 

0.90 

(0.52) 

2.24 

(0.28) 

1.40 

(0.52) 

1.69 

(0.20) 

1.28 

(0.23) 

1.73 

(0.27) 

2.57 

(0.26) 

1.28 

(0.03) 

1.05 

(0.04) 

-0.02 

(0.02) 

  Variables interacted with arousal (pc1)  

    
-0.39 

(0.19) 

-0.57 

(0.39) 

-0.27 

(0.21) 

-0.65 

(0.40) 

-0.39 

(0.18) 

0.10 

(0.19) 

-0.46 

(0.20) 

-0.06 

(0.22) 

-0.08 

(0.03) 

0.07 

(0.03) 
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